Introduction to Machine-learned Interatomic Potentials (MLIPs)

Nima Karimitari

Find the potential energy surface with a few Quantum chemistry calculations

$$E_{\text{pot}}(R,Z) = \sum_{i}^{N} E_{i}(\{\mathbf{r}_{j}, z_{j}\}_{j \in \mathcal{N}(i)})$$

Atomic Chemical positions elements

• Fit a parametric function (Linear models, Neural Networks (NNs)):

$$E_i = V^{(1)}(\mathbf{r}_i) + \frac{1}{2} \sum_j V^{(2)}(\mathbf{r}_i, \mathbf{r}_j) + \frac{1}{3!} \sum_{jk} V^{(3)}(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k) + \dots$$

- Reference data : DFT, CCSD, MP2...
- Goal : Reference accuracy without the electrons

Active field in the past decade

- Neural Network
 - Behler–Parrinello neural network (BPNN) [1]
 - Deep potential for molecular dynamics (DeePMD) [2]
- Kernel methods
 - Gaussian approximation potentials (GAP) [3]
 - Adaptive, generalizable, and neighborhood informed (AGNI) force fields [4]
 - aenet [5]
- Linear models
 - Spectral neighbor analysis potential (SNAP) [6]
 - Atomic cluster Expansion (ACE) [7]
- Equivariant graph neural networks
 - Multi-ACE (MACE) [8]
 - NequiP [9]
 - Equiformer [10]

Phys. Rev. Lett. 2007, **98**, 146401.
 Comput. Phys. Commun. 2018, **228**, 178.
 Phys. Rev. Lett. 2010, **104**, 136403.
 Phys. Rev. B 2015, **92**, 094306.
 J. Comput. Phys. 2015, **285**, 316.
 Comput. Mater. Sci.2016, **114**, 135.

[7] Phys. Rev. B 100, 249901 (2019)
[8] J. Chem. Phys. 159, 044118 (2023)
[9] Nat Commun 13, 2453 (2022)
[10] arXiv:2306.12059

Message passing neural networks (MPNN)

- MPNNs Potentials have 3 phases :
 - 1. The message construction phase,

$$\boldsymbol{m}_{i}^{(t)} = rac{1}{\lambda} \bigoplus_{j \in \mathcal{N}(i)} M_{t}(\sigma_{i}^{(t)}, \sigma_{j}^{(t)})$$

- N(i): Neighbors of i within a cut-off radius
- \oplus : Permutationally invariant pooling
- 2. The update phase,

$$\sigma_i^{(t+1)} \equiv (r_i, \theta_i, h_i^{(t+1)}) = (r_i, \theta_i, U_t(\sigma_i^{(t)}, m_i^{(t)}))$$

3. The readouts phase,

$$E_i = \sum_t \mathcal{R}_t(\sigma_i^{(t)})$$

Ilyes Batatia et al. The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials _arXiv:2205.06643

Multi-ACE (MACE)

Higher order message passing in MACE

Construction of higher-body order of ACE basis

- 1. Neighborhood graph
- 2. The one-particle basis
 - Edge features
 - Directed graph

3. A basis

- Pooling over the neighbors
- Density trick
- Higher order interaction
- 4. B basis
 - Averaging over all O(3) rotations
 - Complete basis

Using 4-body messages,

two layers => faster and parallelizable potential

Ilyes Batatia et al. The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials <u>arXiv:2205.06643</u> *Ilyes Batatia et al.* Advances in Neural Information Processing Systems 35 (NeurIPS 2022) *Kovacs et al. J. Chem. Phys.* 159, 044118 (2023)

What properties can you find with MLIPs and what are the limitations?

- Anything that only needs energy, forces, virials, etc.
 - Structural optimization
 - Molecular Dynamics
- Properties that do not need explicit electrons
 - Adsorption energy, Decomposition energy, formation energy
 - Phonons (harmonic and anharmonic)
 - Elasticity
 - Nudged Elastic Band calculations
 - Structural phase transitions
 - Charged systems (some recent progress on this subject)[1]
- When charge density is needed, you need beyond MLIP
 - Polarization tensor
 - Dielectric function

[1] arXiv:2406.10915

Silicon amorphous under very high pressure

- 100,000 silicon atoms
- Transition from amorphous to very high density amorphous (VHDA
- Polycrystalline at high pressures
- Empirical methods do not observe either VHDA or polycrystalline

Modeling inhomogeneous response of liquids

Cavitation free energy in agreement with experimental surface tension predictions

J Comput Chem. 2024;45:1821–1828.

Predict the structure for arbitrary combinations of organic cations and inorganic components

1. Select organic cation

 $f^{ML}(X)$

Predict structure

arXiv:2403.06955

Propose ne sstructures that have been synthesized before

Foundation (Universal) models as way to go for training new models

- Models trained to materials project dataset
 - CHGNet [1]
 - M3GNET [2]
 - MACE-MP0 [3]
- Very stable but less accurate than local models
- Best suited for fine-tuning
 - A huge computational advantage in training new models
 - Small datasets with big computational cost (i.e. HSE06)
 - Generalizability to other environments
 - Explicit solvent in different env
- Multi-head approach
 - Train a to two datasets simultaneously
 - Predict two sets of results (e.g. PBE and HSE06 energies)

[1] Nature Machine Intelligence volume 5, 1031–1041 (2023)
[2] Nature Computational Science volume 2, 718–728 (2022)
[3] arXiv:2401.00096

The exercises that you will try today

- How to use a trained model with ASE objects
 - MACE-MP0
- Surface with adsorbate
 - Construct a surface slab from a relaxed bulk structure
 - Relax an adsorbate on the surface area
- Molecular Dynamics
 - NVT simulation for a box of water