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Find the potential energy surface with a few Quantum chemistry
calculations

I:I\IJ = E\JV Energies and forces

(single-point)

9 Regression (“learning”) of
potential-energy surface
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“Exact”, but

N
Epot(R, Z) = Z Ei({rj zji}jen (i)
unknown PES / \ i

Construction of a X (3N dimensional) q (descriptors) Atomic Chemical
reference database positions elements

9 Representation of
atomic environments

* Fit a parametric function (Linear models, Neural Networks (NNs)):

1 1
Ez' = V(l)(rz) —+ 5 ZV(Q)(I'i,I'j) —+ g ZV(S)(I‘Z',Pj,I'k) 4+ ...

j ik

 Reference data : DFT, CCSD, MP2...

* Goal: Reference accuracy without the electrons

Adv. Mater. 2019, 31, 1902765



Active field in the past decade

Neural Network
e Behler—Parrinello neural network (BPNN) [1]
* Deep potential for molecular dynamics (DeePMD) [2]

Kernel methods

* Gaussian approximation potentials (GAP) [3]

« Adaptive, generalizable, and neighborhood informed (AGNI) force fields [4]

* aenet [5]

Linear models
« Spectral neighbor analysis potential (SNAP) [6]
« Atomic cluster Expansion (ACE) [7]

Equivariant graph neural networks
*  Multi-ACE (MACE) [8]
* NequiP [9]
* Equiformer [10]
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Message passing neural networks (MPNN)

Configuration

(f) (f; ] h( )) Learnable

features
Fixed attributes

* MPNNSs Potentials have 3 phases:
1. The message construction phase,

1
mi = 1 @ Mo, o)

* N(i) : Neighbors of i within a cut-off radius
* @ : Permutationally invariant pooling

2. The update phase,
O'(H_l) = (Ti,ei,h§t+1)) (’rzaezaUt( (t)a

i
E, = Z R (t)

Ilyes Batatia et al. The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials _aLXnLZZQiD_GBAB

3. The readouts phase,

mi"))


https://arxiv.org/abs/2205.06643

Multi-ACE (MACE)

Higher order message passing in MACE

Construction of higher-body order of ACE basis

1. Neighborhood graph

2. The one-particle basis
* Edge features
* Directed graph

3. A basis

* Pooling over the neighbors
* Density trick
e Higher order interaction

4, B basis

* Averaging over all O(3) rotations
*  Complete basis

Using 4-body messages,

two layers => faster and parallelizable potential

Ilyes Batatia et al. The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials _arXiv:2205.06643
Ilyes Batatia et al. Advances in Neural Information Processing Systems 35 (NeurlPS 2022)

Kovacs etal. J. Chem. Phys. 159, 044118 (2023)
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https://arxiv.org/abs/2205.06643

What properties can you find with MLIPs and
what are the limitations?

* Anything that only needs energy, forces, virials, etc.
e Structural optimization
* Molecular Dynamics

* Properties that do not need explicit electrons
* Adsorption energy, Decomposition energy, formation energy
Phonons (harmonic and anharmonic)
Elasticity
Nudged Elastic Band calculations
Structural phase transitions
* Charged systems (some recent progress on this subject)[1]

* When charge density is needed, you need beyond MLIP
* Polarization tensor
* Dielectric function

[1] arXiv:2406.10915



Silicon amorphous under very high pressure
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100,000 silicon atoms

Transition from amorphous to very high density amorphous (VHDA

Polycrystalline at high pressures

Empirical methods do not observe either VHDA or polycrystalline

Nature volume 589, pages 59-64 (2021)



Modeling inhomogeneous response of liquids

AG/(4nR?) [mN/m]
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Cavitation free energy in agreement with experimental surface tension predictions

J Comput Chem. 2024;45:1821-1828.
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Predict the structure for arbitrary combinations
of organic cations and inorganic components

1. Select organic cation

2. Select metal cation and halide (I/Cl/Br)
e.g., Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Sn, Bi, Sb

Oreven B/B’

arXiv:2403.06955
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Propose ne sstructures that have been
synthesized before

arxXiv:2403.06955



Foundation (Universal) models as way to go for
training new models

Models trained to materials project dataset
« CHGNet[1]
* M3GNET [2]
« MACE-MPO [3]

Very stable but less accurate than local models

Best suited for fine-tuning
* A huge computational advantage in training new models
* Small datasets with big computational cost (i.e. HSE06)
* Generalizability to other environments
» Explicit solvent in different env

Multi-head approach
* Train a to two datasets simultaneously
* Predict two sets of results (e.g. PBE and HSEO6 energies)

[1] Nature Machine Intelligence volume 5, 1031-1041 (2023)
[2] Nature Computational Science volume 2, 718-728 (2022)
[3] arXiv:2401.00096



The exercises that you will try today

* How to use a trained model with ASE objects
« MACE-MPO

e Surface with adsorbate

e Construct a surface slab from a relaxed bulk structure
e Relax an adsorbate on the surface area

* Molecular Dynamics
e NVT simulation for a box of water
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