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Find the potential energy surface with a few Quantum chemistry 
calculations

• Fit a parametric function (Linear models, Neural Networks (NNs)):

• Reference data : DFT, CCSD, MP2...

• Goal : Reference accuracy without the electrons 
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Active field in the past decade
• Neural Network

• Behler–Parrinello neural network (BPNN) [1]

• Deep potential for molecular dynamics (DeePMD) [2]

• Kernel methods

• Gaussian approximation potentials (GAP) [3]

• Adaptive, generalizable, and neighborhood informed (AGNI) force fields [4]

• aenet [5]

• Linear models
• Spectral neighbor analysis potential (SNAP) [6]

• Atomic cluster Expansion (ACE) [7]

• Equivariant graph neural networks

• Multi-ACE (MACE) [8]

• NequiP [9]

• Equiformer [10]
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Message passing neural networks (MPNN)

• MPNNs Potentials have 3 phases :
1. The message construction phase,

• 𝑁(𝑖) : Neighbors of 𝑖 within a cut-off radius
• ⊕ : Permutationally invariant pooling

2. The update phase,

3. The readouts phase,
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Multi-ACE (MACE)

Higher order message passing in MACE

Construction of higher-body order of ACE basis

1. Neighborhood graph

2. The one-particle basis 
• Edge features

• Directed graph

3. A basis
• Pooling over the neighbors

• Density trick

• Higher order interaction

4. B basis
• Averaging over all O(3) rotations

• Complete basis

Using 4-body messages, 

two layers => faster and parallelizable potential
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What properties can you find with MLIPs and 
what are the limitations?

• Anything that only needs energy, forces, virials, etc. 
• Structural optimization
• Molecular Dynamics

• Properties that do not need explicit electrons
• Adsorption energy, Decomposition energy, formation energy
• Phonons (harmonic and anharmonic)
• Elasticity
• Nudged Elastic Band calculations
• Structural phase transitions
• Charged systems (some recent progress on this subject)[1]

• When charge density is needed, you need beyond MLIP
• Polarization tensor
• Dielectric function

[1] arXiv:2406.10915



Silicon amorphous under very high pressure

• 100,000 silicon atoms 

• Transition from amorphous to very high density amorphous (VHDA

• Polycrystalline at high pressures

• Empirical methods do not observe either VHDA or polycrystalline

Nature volume 589, pages 59–64 (2021)



Modeling inhomogeneous response of liquids

Cavitation free energy in agreement with experimental surface tension predictions

J Comput Chem. 2024;45:1821–1828.



1. Select organic cation

2. Select metal cation and halide (I/Cl/Br)

Predict the structure for arbitrary combinations 
of organic cations and inorganic components  

Predict structure 

e.g., Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Sn, Bi, Sb
Or even B/B’

fML(x)

arXiv:2403.06955



Propose ne sstructures that have been 
synthesized before

arXiv:2403.06955



Foundation (Universal) models as way to go for 
training new models
• Models trained to materials project dataset

• CHGNet [1]
• M3GNET [2]
• MACE-MP0 [3]

• Very stable but less accurate than local models

• Best suited for fine-tuning
• A huge computational advantage in training new models
• Small datasets with big computational cost (i.e. HSE06)
• Generalizability to other environments
• Explicit solvent in different env

• Multi-head approach
• Train a to two datasets simultaneously
• Predict two sets of results (e.g. PBE and HSE06 energies)

[1] Nature Machine Intelligence volume 5, 1031–1041 (2023)
[2] Nature Computational Science volume 2, 718–728 (2022)
[3] arXiv:2401.00096



The exercises that you will try today

• How to use a trained model with ASE objects
• MACE-MP0

• Surface with adsorbate
• Construct a surface slab from a relaxed bulk structure
• Relax an adsorbate on the surface area

• Molecular Dynamics
• NVT simulation for a box of water
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