JDFT calculations in practice with JDFTx

The BEAST collaboration

3 Annual BEAST Workshop, 2024

August 22, 2024

U.S. DEPARTMENT OF

ENERGY

Office of Science

Award # DE-5C0022247




JDFTx features

» JDFTx is a fully-featured plane-wave DFT code

» Focus here: capabilities for electrochemistry

» We'll cover the underlined: small fraction of what JDFTx can do!
» Many more tutorials on https://jdftx.org

Electronic Fluid

> Exchange-correlation: semilocal, meta-GGA, > Linear solvation: GLSSA13, SCCS, CANDLE
EXX-hybrids, DFT+U, DFT-D2, LibXC P Nonlinear solvation: GLSSA13
>

P Pseudopotentials: norm-conserving and ultrasoft Nonlocal solvation: SALSA

P Noncollinear magnetism / spin-orbit coupling »  JDFT with classical DFT fluids

> Algorithms: variational minimization, SCF Outputs (selected)

> Grand canonical (fixed potential) for electrochemistry P DOS, optical matrix elements, polarizability etc.

> Truncated Coulomb for 0D, 1D, 2D or 3D periodicity > Wannier functions and ab initio tight-binding

> Custom external potentials, electric fields P Electron-electron and electron-phonon scattering
P Charged-defect corrections: bulk and interfacial Interfaces

> lon/lattice optimization with constraints »  Solvated QMC with CASINO

»  Ab initio molecular dynamics > Atomistic Simulation Environment (NEB, MD etc.)
>

Vibrational modes, phonons and free energies P Visualization: VESTA, XCrySDen, PyMOL



https://jdftx.org

The JDFTx input file

#— Pseudopotentials
ion—species GBRV/$ID_pbe.uspp #GBRV family
elec—cutoff 20 100 #Ecuts for psi and rho
#—— Geometry
lattice Hexagonal 10.53 30.0 #a and ¢ in bohrs
coulomb—interaction Slab 001 #Make z nonperiodic
coulomb—truncation—embed 0 0 0 #Specify center
coords—type Lattice #fractional coordinates

ion Pt 0.33333 —0.33333 —0.288 0
ion Pt 0.33333 —0.83333 —0.288 0
ion Pt 0.83333 —0.83333 —0.288 0
ion Pt 0.83333 —0.33333 —0.288 0
ion Pt 0.16667 —0.16667 —0.144 0
ion Pt 0.16667 —0.66667 —0.144 0
ion Pt 0.66667 —0.16667 —0.144 0
ion Pt 0.66667 —0.66667 —0.144 0
ion Pt 0.000 0.000 0.000 0
ion Pt 0.000 —0.500 0.000 0
ion Pt 0.500 0.000 0.000 0
ion Pt 0.500 —0.500 0.000 0 #0 => fixed
ion O 0.152 —0.079 0.155 1 #1 => free
ion O —0.152 +0.079 0.155 1
ion C 0.000 0.000 0.190 1 Planar 00 1
ion H 0.000 0.000 0.260 1

ionic—minimize nlterations 10 #Optimize geometry
#—— Electronic
kpoint—folding 6 6 1
elec—smearing Cold 0.01
target—mu —0.160
#— Fluid —
fluid LinearPCM
pcm—variant CANDLE
fluid—solvent H20
fluid—cation Na+ 1.
fluid—anion F— 1.
#—— Outputs
dump lonic lonicPositions ElecDensity BoundCharge
dump—name test.$VAR #Output filename pattern

#Gamma—centered k—mesh
#Select cold smearing
#Fix echem potential

#Class of solvation model
#Specific model within class
#Aqueous electrolyte

#1 mol/L Na+ cation

#1 mol/L F— anion

v

Free-format input file with one
command per line

Command order does not matter
(except the order of ions)

Each documented extensively at
https://jdftx.org/Commands.html

Sensible defaults: input can be brief
Hartree atomic units throughout

Full example here: formate ion
adsorbed on 2x2, 3-layer biased,
solvated Pt(111)

@ (b) T
D

ey Dy :sr
G, \



https://jdftx.org/Commands.html

Geometry

lattice Hexagonal 10.53 30.0 #a and c in bohrs
coords—type Lattice #fractional coordinates
ion Pt 0.33333 —0.33333 —0.288 0
ion Pt 0.33333 —0.83333 —0.288 0
ion Pt 0.83333 —0.83333 —0.288 0
ion Pt 0.83333 —0.33333 —0.288 0

> Specify lattice system, or manually specify lattice vectors
» Specify ionic positions in fractional or Cartesian coordinates




Non-periodic geometries

coulomb—interaction Slab 001 #Make z nonperiodic
coulomb—truncation—embed 0 0 0O #Specify center

» Plane-wave DFT is intrinsically periodic

Emulate non-periodic geometries by truncated Cpulomb interactions
Important: wave functions are still expanded in Fourier coefficients

Leave just enough margin to let wave functions/decay to zero

JDFTx supports slab, wire or isolated geometries (2D, 1D or 0D periodic)




Electronic DFT parameters

ion—species GBRV/S$ID _pbe.uspp #Pseudopotentials

elec—ex—corr gga—PBE #Default XC
elec—cutoff 20 100 #KE Cutoff on PWs
kpoint—folding 6 6 1 #Gamma—centered k—mesh

elec—smearing Cold 0.01 #To sample Fermi surface

>
>
>
>
>

Must specify pseudopotials, individually or as a set
Exchange-correlation (XC) is PBE GGA by default

Basis set controlled by plane-wave kinetic energy cutoff (Ejp)
Brillouin zone sampling specified by k-mesh size

Several smearing options for metals (Fermi, Gauss, Cold, MP1)




Actions

electronic—minimize energyDiffThreshold 1E—7 #or:
electronic —=SCF energyDiffThreshold 1E—7

ionic—minimize nlterations 10 #Optimize geometry

» Kohn-Sham DFT solvable by two independent approaches:

» Variational minimization (default, more robust)
> Self-Consistent Field iteration (can be faster)

» Prefer the more-stable minimization for grand-canonical DFT

> Geometry optimization of ions and lattice (not on by default)




Outputs and continuation

initial —state test.$VAR #Start from checkpoint

dump—name test.$VAR #Qutput filename pattern
dump End BoundCharge #For Visualization at end
dump lonic State #Checkpoint every ionic step

» Full control over what, when and how to name outputs

» Example:
> Load from checkpoints saved in test.*
> Save outputs in test.*
> Write solvent charge response at end (will be test.nbound)
> Write checkpoint every ionic step (will be test.ionpos, test.wfns, test.fillings,

test.eigenvals)

» See documentation of dump command for full list of options



Solvation

fluid LinearPCM #Class of solvation model
pcm—variant CANDLE  #Specific model within class
fluid —solvent H20 #Aqueous electrolyte
fluid —cation Nat+ 1. #1 mol/L Na+ cation
fluid —anion F— 1. #1 mol/L F— anion

Specify type of fluid: none, a few implicit options, classical DFT
For implicit solvent model, select variant (here: CANDLE)

CANDLE supports H20 and CH3CN (acetonitrile)
Implicit electrolyte is always non-adsorbing, recommend always use NaF

pr

>
>
> Select solvent, and optionally electrolyte
>
>



10

Grand-canonical DFT

target—mu —0.160 #Fix echem potential

> Specify absolute electron chemical potential in Hartrees: that's it!
» Need to convert potential U relative to reference electrode to absolute scale

> Essentially, u = —(U + V4ef)/27.21, where V¢ is absolute potential of
reference electrode below vacuum level

» For Standard Hydrogen electrode, Vsye = 4.66 eV calibrated for the
CANDLE solvation model

» Important: MUST specify electrolyte for GC-DFT to be sensible!

Jr



11
Solvation and electrochemistry workflow

1. Converge vacuum calculation (electronic and geometry)
2. Solvate at fixed charge / neutral
3. Apply bias if needed

Note: JDFTx will automatically run vacuum calculations where needed to get a
reasonable starting point. We will use this in the tutorials, but recommend
converging vacuum separately in production calculations.

pr



12

Parallelization

» JDFTx is a hybrid MPI-threads code and particularly shines on GPUs
» On perlmutter, we will often use the 4 A100 GPUs on each node as:
srun -n 4 --gpus 4 jdftx_gpu -i in | tee out
which means

> Run 4 processes using 4 GPUs total (one each)
> Take input from file ‘in’ and mirror output to terminal and file ‘out’




12

Parallelization

v

JDFTx is a hybrid MPI-threads code and particularly shines on GPUs
On perlmutter, we will often use the 4 A100 GPUs on each node as:
srun -n 4 --gpus 4 jdftx_gpu -i in | tee out

which means

> Run 4 processes using 4 GPUs total (one each)
> Take input from file ‘in’ and mirror output to terminal and file ‘out’

MPI parallelization in JDFTx is over k-points and spin only
Look for ‘nStates’ in output file using a dry run ‘jdftx -ni in'

Determine number of MPI processes based on ‘nStates’




12

Parallelization

vvyyy

JDFTx is a hybrid MPI-threads code and particularly shines on GPUs
On perlmutter, we will often use the 4 A100 GPUs on each node as:
srun -n 4 --gpus 4 jdftx_gpu -i in | tee out
which means

> Run 4 processes using 4 GPUs total (one each)

» Take input from file ‘in’ and mirror output to terminal and file ‘out’
MPI parallelization in JDFTx is over k-points and spin only
Look for ‘nStates’ in output file using a dry run ‘jdftx -ni in'
Determine number of MPI processes based on ‘nStates’

In the tutorials, to demonstrate best practices, we will use 1 perlmutter
node as:
> Single process with one GPU (-n 1 —gpus 1) for molecule / ion calculations
with nStates = 1
> One process per GPU (-n 4 —gpus 4) for solvated / biased surface
calculations with intermediate values of nStates

(Our examples with nStates = 10 could be run over three nodes with
-N 3 -n 10 —gpus 10, but we will keep to one node for the tutorial.) ‘



13
QimPy: Quantum-Integrated Multi-PhYsics

Qivss P}/

> Successor to JDFTx in Python using PyTorch as HAL for CPU/GPU/TPU

» Preview tomorrow: plane-wave DFT and AIMD with norm-conserving PS
(Solvation, ultrasoft, PAW, DFT+U etc. coming soon)

> Efficient multi-level parallelization over replicas, k-points and bands to
scale to many more CPUs and GPUs

pr



13
QimPy: Quantum-Integrated Multi-PhYsics

Qivss P‘;—-{

> Successor to JDFTx in Python using PyTorch as HAL for CPU/GPU/TPU

> Preview tomorrow: plane-wave DFT and AIMD with norm-conserving PS
(Solvation, ultrasoft, PAW, DFT+U etc. coming soon)

» Efficient multi-level parallelization over replicas, k-points and bands to
scale to many more CPUs and GPUs

» Goal: rapid development in Python without sacrificing performance

v

Common heirarchy in YAML inputs, HDF5 checkpoints and code structure

pr

» Learn to use QimPy and you know where things are in the code!



13
QimPy: Quantum-Integrated Multi-PhYsics

Qivss P‘;—-{

> Successor to JDFTx in Python using PyTorch as HAL for CPU/GPU/TPU

> Preview tomorrow: plane-wave DFT and AIMD with norm-conserving PS
(Solvation, ultrasoft, PAW, DFT+U etc. coming soon)

v

Efficient multi-level parallelization over replicas, k-points and bands to
scale to many more CPUs and GPUs

Goal: rapid development in Python without sacrificing performance
Common heirarchy in YAML inputs, HDF5 checkpoints and code structure
Learn to use QimPy and you know where things are in the code!

Looking for developers, maintainers and documenters: community effort

Tomorrow's session will provide glimpse into development as well ‘

vvyvyyVvVyy



