
JDFT calculations in practice with JDFTx

The BEAST collaboration

3rd Annual BEAST Workshop, 2024

August 22, 2024

Award # DE-SC0022247



JDFTx features

▶ JDFTx is a fully-featured plane-wave DFT code

▶ Focus here: capabilities for electrochemistry

▶ We’ll cover the underlined: small fraction of what JDFTx can do!

▶ Many more tutorials on https://jdftx.org

Electronic

▶ Exchange-correlation: semilocal, meta-GGA,
EXX-hybrids, DFT+U, DFT-D2, LibXC

▶ Pseudopotentials: norm-conserving and ultrasoft

▶ Noncollinear magnetism / spin-orbit coupling

▶ Algorithms: variational minimization, SCF

▶ Grand canonical (fixed potential) for electrochemistry

▶ Truncated Coulomb for 0D, 1D, 2D or 3D periodicity

▶ Custom external potentials, electric fields

▶ Charged-defect corrections: bulk and interfacial

▶ Ion/lattice optimization with constraints

▶ Ab initio molecular dynamics

▶ Vibrational modes, phonons and free energies

Fluid

▶ Linear solvation: GLSSA13, SCCS, CANDLE

▶ Nonlinear solvation: GLSSA13

▶ Nonlocal solvation: SALSA

▶ JDFT with classical DFT fluids

Outputs (selected)

▶ DOS, optical matrix elements, polarizability etc.

▶ Wannier functions and ab initio tight-binding

▶ Electron-electron and electron-phonon scattering

Interfaces

▶ Solvated QMC with CASINO

▶ Atomistic Simulation Environment (NEB, MD etc.)

▶ Visualization: VESTA, XCrySDen, PyMOL

2

https://jdftx.org


The JDFTx input file
#−−− Ps e udopo t e n t i a l s −−−
ion−s p e c i e s GBRV/$ ID pbe . uspp #GBRV f am i l y
e l e c−c u t o f f 20 100 #Ecuts f o r p s i and rho
#−−− Geometry −−−
l a t t i c e Hexagonal 10 .53 30 .0 #a and c i n bohr s
coulomb−i n t e r a c t i o n S lab 001 #Make z n o np e r i o d i c
coulomb−t r u n c a t i o n−embed 0 0 0 #Sp e c i f y c e n t e r
coords−t ype L a t t i c e #f r a c t i o n a l c o o r d i n a t e s
i on Pt 0 .33333 −0.33333 −0.288 0
i on Pt 0 .33333 −0.83333 −0.288 0
i on Pt 0 .83333 −0.83333 −0.288 0
i on Pt 0 .83333 −0.33333 −0.288 0
i on Pt 0 .16667 −0.16667 −0.144 0
i on Pt 0 .16667 −0.66667 −0.144 0
i on Pt 0 .66667 −0.16667 −0.144 0
i on Pt 0 .66667 −0.66667 −0.144 0
i on Pt 0 .000 0 .000 0 .000 0
i on Pt 0 .000 −0.500 0 .000 0
i on Pt 0 .500 0 .000 0 .000 0
i on Pt 0 .500 −0.500 0 .000 0 #0 => f i x e d
i on O 0.152 −0.079 0 .155 1 #1 => f r e e
i on O −0.152 +0.079 0 .155 1
i on C 0.000 0 .000 0 .190 1 P lana r 0 0 1
i on H 0.000 0 .000 0 .260 1
i o n i c−min imize n I t e r a t i o n s 10 #Opt imize geometry
#−−− E l e c t r o n i c −−−
kpo in t−f o l d i n g 6 6 1 #Gamma−c en t e r e d k−mesh
e l e c−smear ing Cold 0 .01 #S e l e c t c o l d smear ing
t a r g e t−mu −0.160 #F ix echem p o t e n t i a l
#−−− F l u i d −−−
f l u i d LinearPCM #C l a s s o f s o l v a t i o n model
pcm−v a r i a n t CANDLE #S p e c i f i c model w i t h i n c l a s s
f l u i d−s o l v e n t H2O #Aqueous e l e c t r o l y t e
f l u i d−c a t i o n Na+ 1 . #1 mol/L Na+ ca t i o n
f l u i d−an ion F− 1 . #1 mol/L F− an ion
#−−− Outputs −−−
dump I o n i c I o n i c P o s i t i o n s E l e cDen s i t y BoundCharge
dump−name t e s t .$VAR #Output f i l e n ame pa t t e r n

▶ Free-format input file with one
command per line

▶ Command order does not matter
(except the order of ions)

▶ Each documented extensively at
https://jdftx.org/Commands.html

▶ Sensible defaults: input can be brief

▶ Hartree atomic units throughout

▶ Full example here: formate ion
adsorbed on 2x2, 3-layer biased,
solvated Pt(111)

3

https://jdftx.org/Commands.html


Geometry

l a t t i c e Hexagonal 10 .53 30 .0 #a and c i n bohr s
coords−type L a t t i c e #f r a c t i o n a l c o o r d i n a t e s
i on Pt 0 .33333 −0.33333 −0.288 0
i on Pt 0 .33333 −0.83333 −0.288 0
i on Pt 0 .83333 −0.83333 −0.288 0
i on Pt 0 .83333 −0.33333 −0.288 0

...

▶ Specify lattice system, or manually specify lattice vectors

▶ Specify ionic positions in fractional or Cartesian coordinates

4



Non-periodic geometries

coulomb− i n t e r a c t i o n S lab 001 #Make z n o np e r i o d i c
coulomb−t r u n c a t i o n−embed 0 0 0 #Sp e c i f y c e n t e r

▶ Plane-wave DFT is intrinsically periodic

▶ Emulate non-periodic geometries by truncated Coulomb interactions

▶ Important: wave functions are still expanded in Fourier coefficients

▶ Leave just enough margin to let wave functions decay to zero

▶ JDFTx supports slab, wire or isolated geometries (2D, 1D or 0D periodic)

5



Electronic DFT parameters

ion−s p e c i e s GBRV/ $ ID pbe . uspp #Ps e udopo t e n t i a l s
e l e c−ex−c o r r gga−PBE #De f au l t XC

e l e c−c u t o f f 20 100 #KE Cuto f f on PWs
kpo in t−f o l d i n g 6 6 1 #Gamma−c en t e r e d k−mesh

e l e c−smear ing Cold 0 .01 #To sample Fermi s u r f a c e

▶ Must specify pseudopotials, individually or as a set

▶ Exchange-correlation (XC) is PBE GGA by default

▶ Basis set controlled by plane-wave kinetic energy cutoff (Eh)

▶ Brillouin zone sampling specified by k-mesh size

▶ Several smearing options for metals (Fermi, Gauss, Cold, MP1)

6



Actions

e l e c t r o n i c −min imize e n e r g yD i f fTh r e s h o l d 1E−7 #or :
e l e c t r o n i c −SCF en e r g yD i f fTh r e s h o l d 1E−7

i o n i c −min imize n I t e r a t i o n s 10 #Opt imize geometry

▶ Kohn-Sham DFT solvable by two independent approaches:
▶ Variational minimization (default, more robust)
▶ Self-Consistent Field iteration (can be faster)

▶ Prefer the more-stable minimization for grand-canonical DFT

▶ Geometry optimization of ions and lattice (not on by default)

7



Outputs and continuation

i n i t i a l −s t a t e t e s t .$VAR #St a r t from checkpo i n t

dump−name t e s t .$VAR #Output f i l e n ame pa t t e r n
dump End BoundCharge #For V i s u a l i z a t i o n at end
dump I o n i c S ta t e #Checkpo in t e v e r y i o n i c s t ep

▶ Full control over what, when and how to name outputs

▶ Example:
▶ Load from checkpoints saved in test.*
▶ Save outputs in test.*
▶ Write solvent charge response at end (will be test.nbound)
▶ Write checkpoint every ionic step (will be test.ionpos, test.wfns, test.fillings,

test.eigenvals)

▶ See documentation of dump command for full list of options

8



Solvation

f l u i d LinearPCM #C l a s s o f s o l v a t i o n model
pcm−v a r i a n t CANDLE #S p e c i f i c model w i t h i n c l a s s
f l u i d −s o l v e n t H2O #Aqueous e l e c t r o l y t e
f l u i d −c a t i o n Na+ 1 . #1 mol/L Na+ ca t i o n
f l u i d −an ion F− 1 . #1 mol/L F− an ion

▶ Specify type of fluid: none, a few implicit options, classical DFT

▶ For implicit solvent model, select variant (here: CANDLE)

▶ Select solvent, and optionally electrolyte

▶ CANDLE supports H2O and CH3CN (acetonitrile)

▶ Implicit electrolyte is always non-adsorbing, recommend always use NaF

9



Grand-canonical DFT

t a r g e t−mu −0.160 #F ix echem p o t e n t i a l

▶ Specify absolute electron chemical potential in Hartrees: that’s it!

▶ Need to convert potential U relative to reference electrode to absolute scale

▶ Essentially, µ = −(U + Vref)/27.21, where Vref is absolute potential of
reference electrode below vacuum level

▶ For Standard Hydrogen electrode, VSHE = 4.66 eV calibrated for the
CANDLE solvation model

▶ Important: MUST specify electrolyte for GC-DFT to be sensible!

10



Solvation and electrochemistry workflow

1. Converge vacuum calculation (electronic and geometry)

2. Solvate at fixed charge / neutral

3. Apply bias if needed

Note: JDFTx will automatically run vacuum calculations where needed to get a
reasonable starting point. We will use this in the tutorials, but recommend
converging vacuum separately in production calculations.

11



Parallelization

▶ JDFTx is a hybrid MPI-threads code and particularly shines on GPUs

▶ On perlmutter, we will often use the 4 A100 GPUs on each node as:

srun -n 4 --gpus 4 jdftx_gpu -i in | tee out

which means
▶ Run 4 processes using 4 GPUs total (one each)
▶ Take input from file ‘in’ and mirror output to terminal and file ‘out’

▶ MPI parallelization in JDFTx is over k-points and spin only

▶ Look for ‘nStates’ in output file using a dry run ‘jdftx -ni in‘

▶ Determine number of MPI processes based on ‘nStates’

▶ In the tutorials, to demonstrate best practices, we will use 1 perlmutter
node as:
▶ Single process with one GPU (-n 1 –gpus 1) for molecule / ion calculations

with nStates = 1
▶ One process per GPU (-n 4 –gpus 4) for solvated / biased surface

calculations with intermediate values of nStates
(Our examples with nStates = 10 could be run over three nodes with
-N 3 -n 10 –gpus 10, but we will keep to one node for the tutorial.)

12



Parallelization

▶ JDFTx is a hybrid MPI-threads code and particularly shines on GPUs

▶ On perlmutter, we will often use the 4 A100 GPUs on each node as:

srun -n 4 --gpus 4 jdftx_gpu -i in | tee out

which means
▶ Run 4 processes using 4 GPUs total (one each)
▶ Take input from file ‘in’ and mirror output to terminal and file ‘out’

▶ MPI parallelization in JDFTx is over k-points and spin only

▶ Look for ‘nStates’ in output file using a dry run ‘jdftx -ni in‘

▶ Determine number of MPI processes based on ‘nStates’

▶ In the tutorials, to demonstrate best practices, we will use 1 perlmutter
node as:
▶ Single process with one GPU (-n 1 –gpus 1) for molecule / ion calculations

with nStates = 1
▶ One process per GPU (-n 4 –gpus 4) for solvated / biased surface

calculations with intermediate values of nStates
(Our examples with nStates = 10 could be run over three nodes with
-N 3 -n 10 –gpus 10, but we will keep to one node for the tutorial.)

12



Parallelization

▶ JDFTx is a hybrid MPI-threads code and particularly shines on GPUs

▶ On perlmutter, we will often use the 4 A100 GPUs on each node as:

srun -n 4 --gpus 4 jdftx_gpu -i in | tee out

which means
▶ Run 4 processes using 4 GPUs total (one each)
▶ Take input from file ‘in’ and mirror output to terminal and file ‘out’

▶ MPI parallelization in JDFTx is over k-points and spin only

▶ Look for ‘nStates’ in output file using a dry run ‘jdftx -ni in‘

▶ Determine number of MPI processes based on ‘nStates’

▶ In the tutorials, to demonstrate best practices, we will use 1 perlmutter
node as:
▶ Single process with one GPU (-n 1 –gpus 1) for molecule / ion calculations

with nStates = 1
▶ One process per GPU (-n 4 –gpus 4) for solvated / biased surface

calculations with intermediate values of nStates
(Our examples with nStates = 10 could be run over three nodes with
-N 3 -n 10 –gpus 10, but we will keep to one node for the tutorial.)

12



QimPy: Quantum-Integrated Multi-PhYsics

▶ Successor to JDFTx in Python using PyTorch as HAL for CPU/GPU/TPU

▶ Preview tomorrow: plane-wave DFT and AIMD with norm-conserving PS
(Solvation, ultrasoft, PAW, DFT+U etc. coming soon)

▶ Efficient multi-level parallelization over replicas, k-points and bands to
scale to many more CPUs and GPUs

▶ Goal: rapid development in Python without sacrificing performance

▶ Common heirarchy in YAML inputs, HDF5 checkpoints and code structure

▶ Learn to use QimPy and you know where things are in the code!

▶ Looking for developers, maintainers and documenters: community effort

▶ Tomorrow’s session will provide glimpse into development as well

13



QimPy: Quantum-Integrated Multi-PhYsics

▶ Successor to JDFTx in Python using PyTorch as HAL for CPU/GPU/TPU

▶ Preview tomorrow: plane-wave DFT and AIMD with norm-conserving PS
(Solvation, ultrasoft, PAW, DFT+U etc. coming soon)

▶ Efficient multi-level parallelization over replicas, k-points and bands to
scale to many more CPUs and GPUs

▶ Goal: rapid development in Python without sacrificing performance

▶ Common heirarchy in YAML inputs, HDF5 checkpoints and code structure

▶ Learn to use QimPy and you know where things are in the code!

▶ Looking for developers, maintainers and documenters: community effort

▶ Tomorrow’s session will provide glimpse into development as well

13



QimPy: Quantum-Integrated Multi-PhYsics

▶ Successor to JDFTx in Python using PyTorch as HAL for CPU/GPU/TPU

▶ Preview tomorrow: plane-wave DFT and AIMD with norm-conserving PS
(Solvation, ultrasoft, PAW, DFT+U etc. coming soon)

▶ Efficient multi-level parallelization over replicas, k-points and bands to
scale to many more CPUs and GPUs

▶ Goal: rapid development in Python without sacrificing performance

▶ Common heirarchy in YAML inputs, HDF5 checkpoints and code structure

▶ Learn to use QimPy and you know where things are in the code!

▶ Looking for developers, maintainers and documenters: community effort

▶ Tomorrow’s session will provide glimpse into development as well

13


