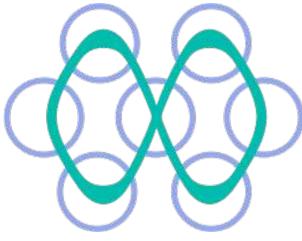


ACS, August 22-23, 2024 **Cooper Tezak**

BEAST Workshop


University of Colorado **Boulder**

Materials databases have accelerated materials science

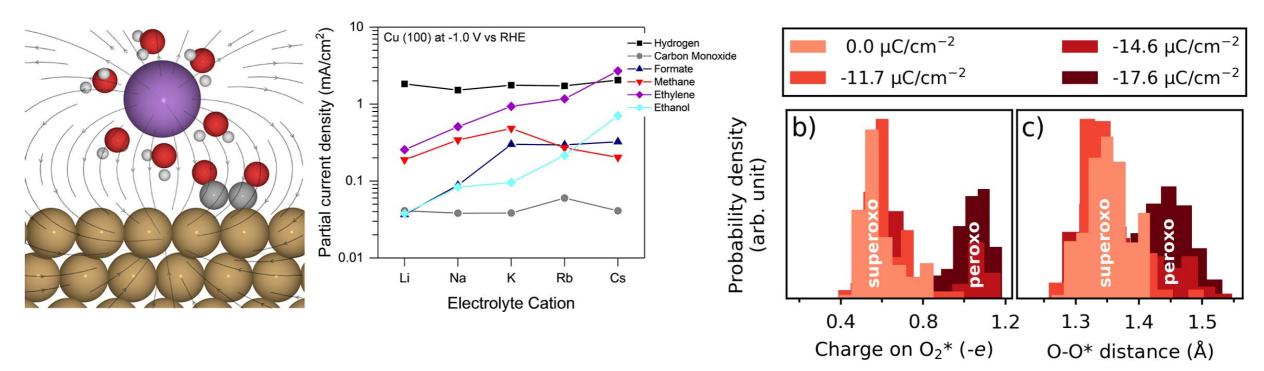
Materials Project

- Optoelectronic properties
- Stability analysis
- OC20 catalysis dataset
- XAFS data

Catalysis-hub

- Adsorption energies
- Barriers
- Some electrocatalysis

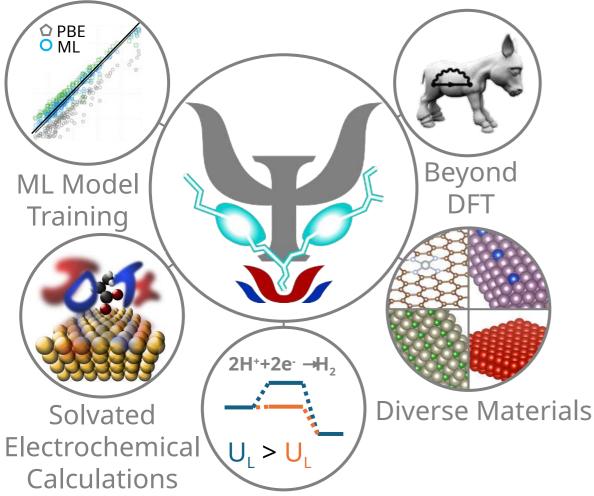
Materials Cloud


- Specific material space archives
- Standardized workflow codes
- Quantum code benchmarks

Electrocatalysis has unique complexity

Solvation environment

Applied potential



The computational community must embrace the complexities of electrocatalysis to accelerate development

Resasco, J.; et al. Promoter Effects of Alkali Metal Cations on the Dudzinski, A. M.; et al. First Step of the Oxygen Reduction Reaction on Electrochemical Reduction of Carbon Dioxide. Metal/Water Interface

Introducing BEAST DB

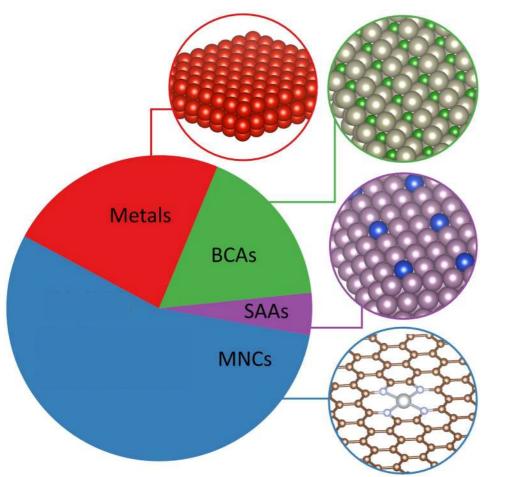
Beyond-DFT Electrochemistry with Accelerated and Solvated Techniques DB

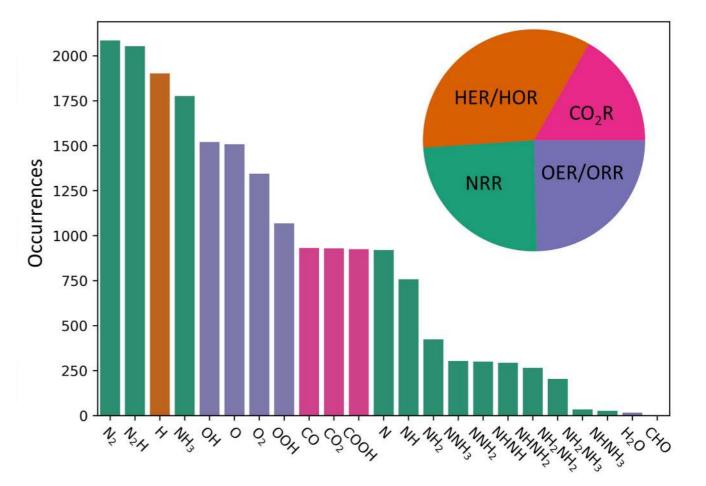
BEAST DB Adsorbates Reactions Calculation details BEAST

Welcome to BEAST DB!

Enabling rational understanding and design of electrocatalysts through state-of-the-art theory

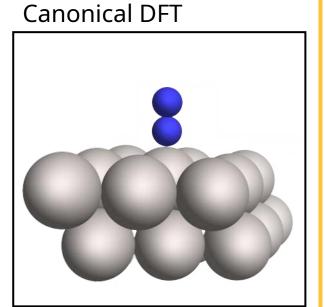
The Beyond-DFT Electrochemistry with Accelerated and Solvated Techniques Database, or BEAST DB, contains thousands of electrocatalysis calculations and visualizations of properties that help rationalize observed behavior and design more effective catalysts.


Open access user interface

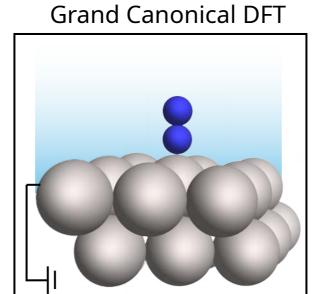

Reaction Analysis

Chemical and Biological Tezak, C. et al. BEAST DB: Grand-Canonical Database of Electrocatalyst Engineering Properties. <u>https://doi.org/10.48550/arXiv.2405.20239</u>. *Under review*

Database overview


20,000 Surface Calculations

Common reactions coverage


Chemical and Biological Engineering

We use electrochemical methodology

- Fixed charge
- Potential correction schemes

 F_{DFT}

- Fixed potential
- Self-consistent free energies

 $\Phi = F_{DFT} - \mu N_e$

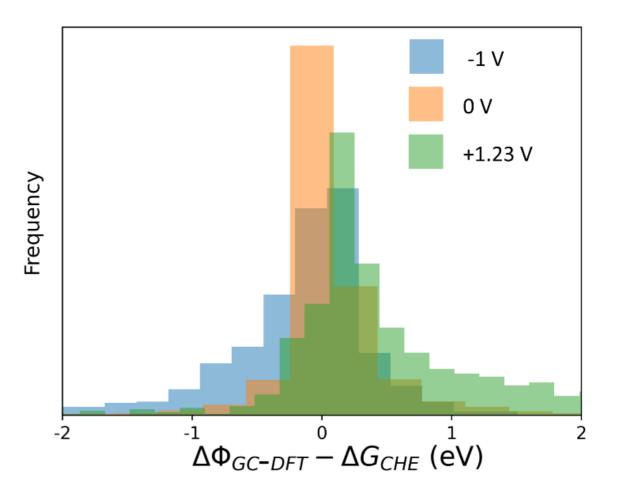
Accurate solvation models

Solvation Model	рКw
CANDLE	17.2
VaspSol	34.0

Consistent calculation parameters

Parameter	Value
Functional	PBE
Solvent	Water
Electrolyte	1M NaF
Cutoff energy	20 Ha

Our methodology facilitates electrocatalytic mechanisms

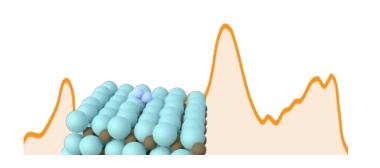

Canonical DFT relies on the computational hydrogen electrode (CHE)

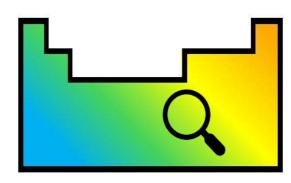
$$G_{H^+ + e^-} = \frac{1}{2}G_{H_2} - U_{SHE}$$

Limitations:

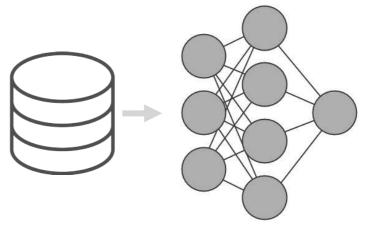
- Proton-coupled electron transfers only
- Linear potential dependence

GC-DFT places no step restrictions and makes no assumptions about potential dependence



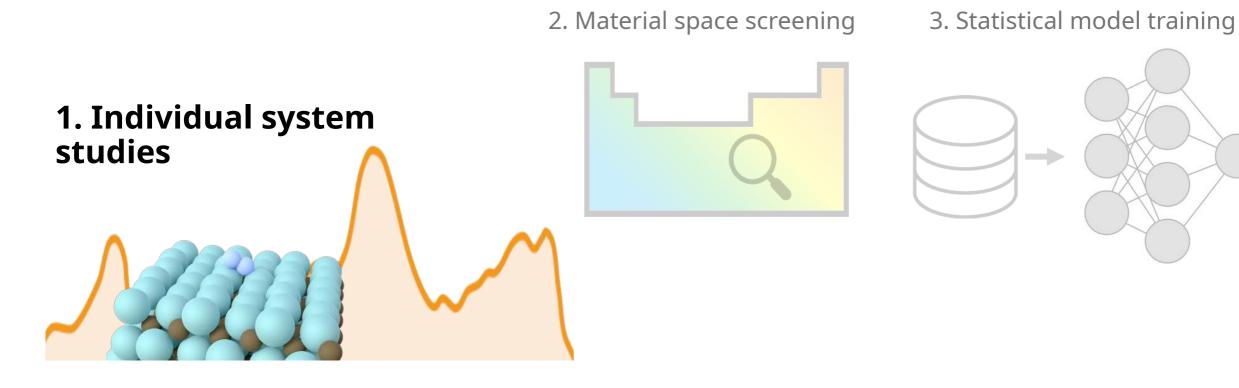

Chemical and Biological Engineering

Capabilities

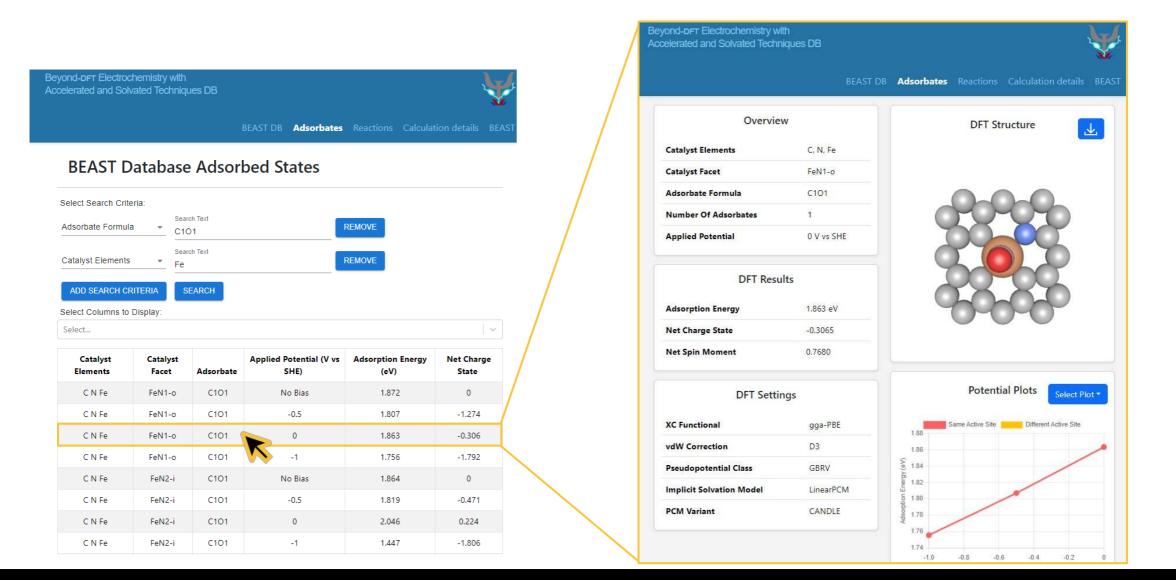

1. Individual system studies

2. Material space screening

3. Statistical model training

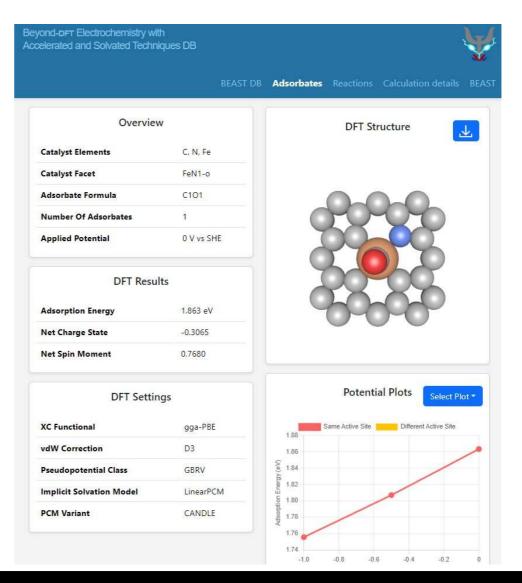


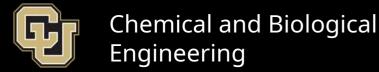
Chemical and Biological Engineering


Capabilities

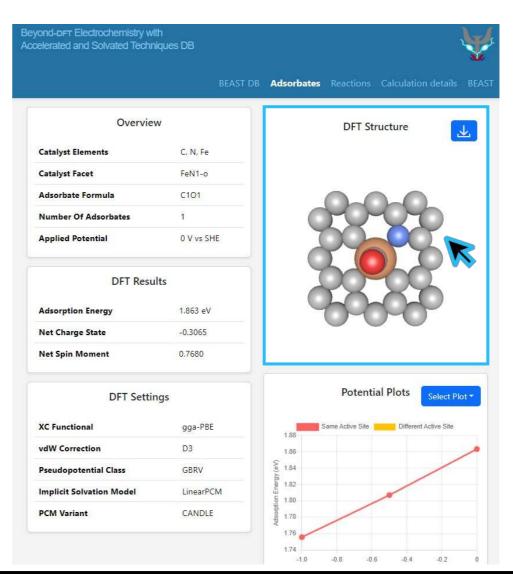
S

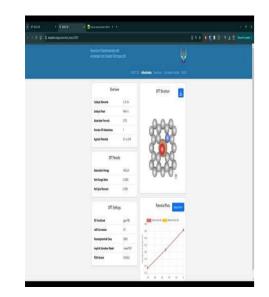
Engineering


UI facilitates granular system understanding



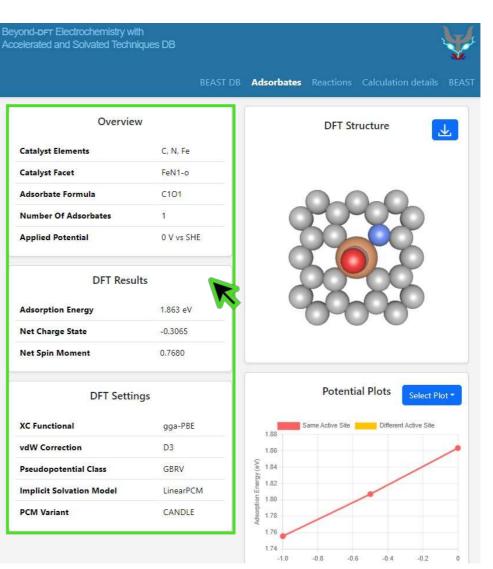
Chemical and Biological Engineering

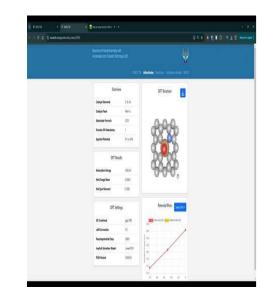

UI facilitates granular system understanding

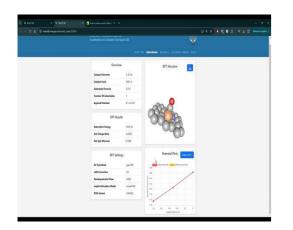


+ + 0 R S booth respectatories (100/321)			2 X X X V	0 . 1 6 m
	Beynton Eindoheniey Annesiet an Ionier To		¥	
		1000	Modan Petro (Kultarida 80	
	Overvi	DH .	DFT Structure	
	Cotaljut Elements	CAN		
	Galaget Tasat	NZ-a		
	Alastes formis	001	0.0.0	
	Number Of Adaptation	1	0000	
	Applied Potential	87a94	20-00	
	DFT Res	vits	DO DO	
	Adaption Deep	102-0	HONOR	
	Nat Drange State	4385	0000	
	Nat Spin Moreart	6760		
	OFT Set	iep	Potential Plats	
	Kfuntera	10+211	and Landardia and Manistra Da	
	vdW Convertion	00		
	Preudopotential Circo	38	1ª	
	inylicit Schotten Wedel	UnselGM		
	ROI Variant	CMOIL		

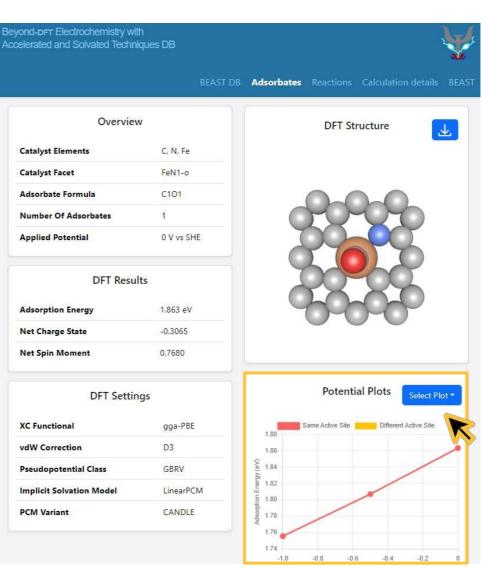
UI facilitates granular system understanding


Chemical and Biological Engineering


Overview	,
Catalyst Elements	C, N, Fe
Catalyst Facet	FeN1-o
Adsorbate Formula	C1O1
Number Of Adsorbates	1
Applied Potential	0 V vs SHE
DFT Result	ts
Adsorption Energy	1.863 eV
Net Charge State	-0.3065
Net Spin Moment	0.7680
DFT Setting	gs
XC Functional	gga-PBE
vdW Correction	D3
Pseudopotential Class	GBRV
Implicit Solvation Model	LinearPCM
PCM Variant	CANDLE

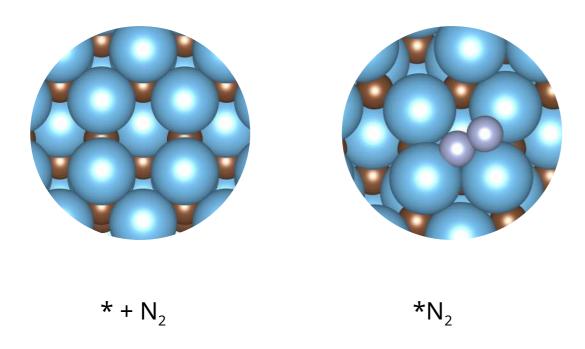

Overview

UI facilitates granular system understanding

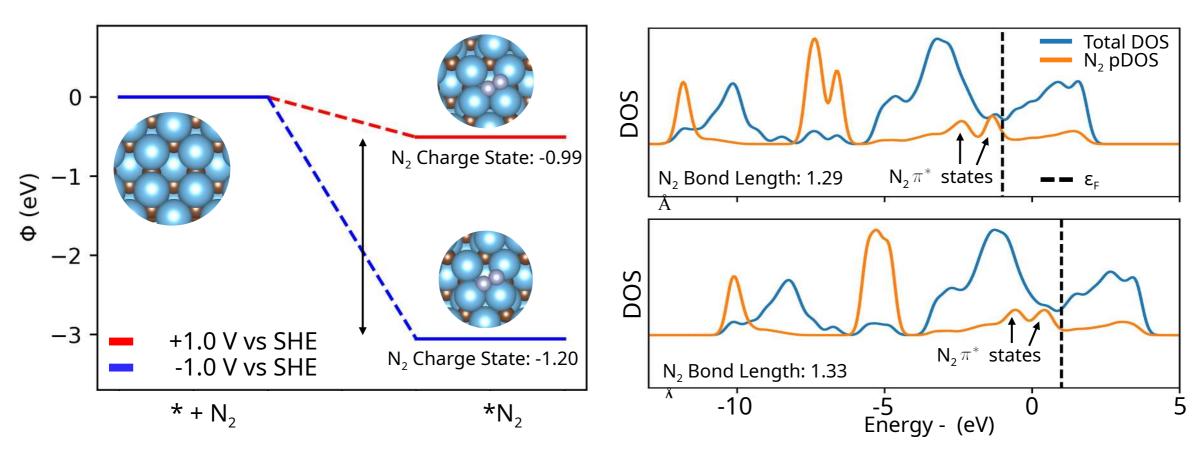


Catalyst Elements	C, N, Fe
Catalyst Facet	FeN1-o
Adsorbate Formula	C101
Number Of Adsorbates	1
Applied Potential	0 V vs SHE
DFT Res	sults
Adsorption Energy	1.863 eV
Net Charge State	-0.3065
Net Spin Moment	0.7680
DFT Set	tings
XC Functional	gga-PBE
vdW Correction	D3
Pseudopotential Class	GBRV
Pseudopotential Class Implicit Solvation Model	GBRV LinearPCM

Overview


UI facilitates granular system understanding

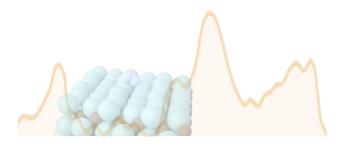
Chemical and Biological Engineering


5,

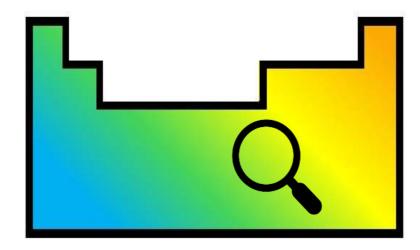
Electronic structure shows potential-dependent N₂ adsorption

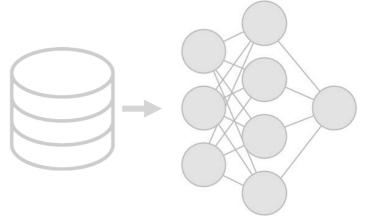
Electronic structure shows potential-dependent N₂ adsorption

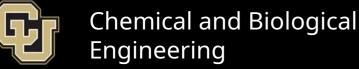
Our model predicts **potential-dependent** N₂ **adsorption** with partial charge transfer Database facilitates **rationalization** of fundamental **electrochemical processes**

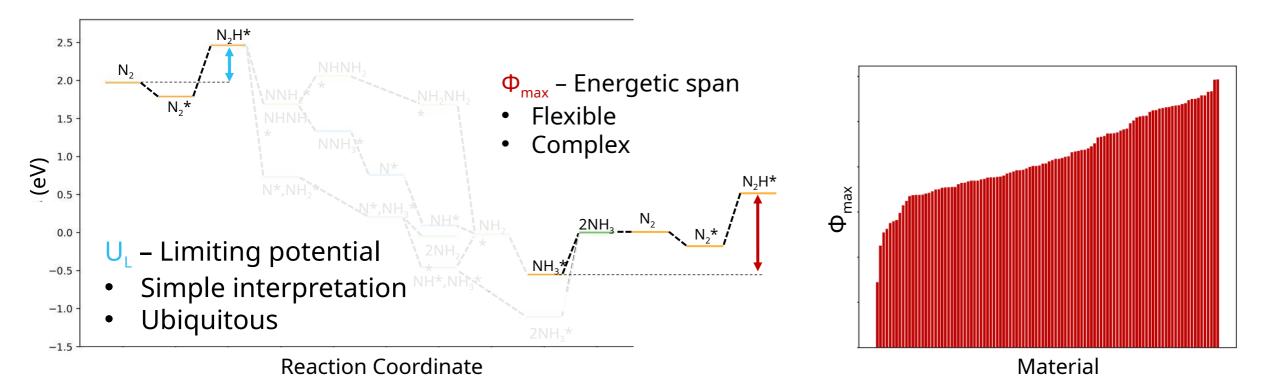


Chemical and Biological Engineering


Capabilities


1. Individual system studies


3. Statistical model training


2. Material space screening

Thermodynamic activity descriptors

Complex mechanisms require cheap descriptors to sort large material spaces

Reaction pathway visualization

Beyond-DFT Electrochemistry with Accelerated and Solvated Techniques DB BEAST DB Adsorbates Reactions Calculation details BEAST

BEAST Database Reactions

elect Search Criteria: Catalyst Elements ADD SEARCH CRITER elect Columns to Disp Select				REMOVE	~
Catalyst Elements	Catalyst Facet	Reaction Type	Potential	Limiting Potential	Energetic Span
P Ru P Ru P Ru P Ru	010	HER	0	0	0.269
Ru	211	NRR	-0.25	5.26	4.809
Ru	211	NRR	-0.5	8.044	6.246
Ru	211	NRR	0	2.485	3.357
Ru	211	HER	-0.25	0.292	0.708
Ru	211	HER	-0.5	1.001	0.999
Ru	211	HER	0	0	0.419

Users can sort materials by descriptors

Chemical and Biological Engineering

Reaction pathway visualization

Beyond-DFT Electrochemistry with Accelerated and Solvated Techniques DB

V

Not

BEAST DB Adsorbates Reactions Calculation details BEAST

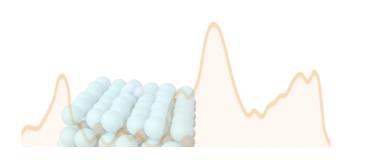
BEAST Database Reactions

Select Search Criteria:					
Catalyst Elements	Search Text Ru			REMOVE	
ADD SEARCH CRITE	RIA SEARCH				
elect Columns to Disp	olay:				
Select					~
Catalyst Elements	Catalyst Facet	Reaction Type	Potential	Limiting Potential	Energetic Span
P Ru P Ru P Ru P Ru	010	HER	0	0	0.269
Ru	211	NRR	-0.25	5.26	4.809
Ru	211	NRR	-0.5	8.044	6.246
Ru	211	NRR	0	2.485	3.357
Ru	211	N HER	-0.25	0.292	0.708
Ru	211	HER	-0.5	1.001	0.999
Ru	211	HER	0	0	0.419

bastlineigevinctinuistios								a •	- Til -		
	Beyond-ort Decreation Accessibilities and Solvate	istry with 1 Techniques Diff			*	¥					
			1646) (00	Adambatio	Chieffers	anuninali mas	ŝ				
	BEAST Dat	abase Re	actions								
	Belezt Bearch Orlania Catalys: Elements	Siata Dai			RENOVE						
	And Served an Canter Benefit Columns to Usp Server.	the second second									
	Catalyst Remotes	Catalyst Facet	Reaction Type	Potential	Limiting Patential	Exergetis Span					
	P Ru P Ru P Ru P Ru	010	HET	0		0.219					
	Ra	541	NRE.	0.25	5,29	4.809					
	Ra	211	NR	-0.5	2.944	6.245					
	Pro	211	1485	0	2.485	3.357					
	Bu	211	HER	-2.35	0.292	41708					
	Ð ₂	211	HER	-0.5	1.001	0.999					
	Ru.	211	127	0	0	0,418					
	Bu	001	NAR.	0	3.178	3.204					
	Ru	001	NR	-0.25	200	4.595					
	Pig .	001	1988	-0.5	8.758	5.797					
	Ra	021	HER	D	۰	0.551					
	Ro	001	HER	-3.25	0354	0.646					
	Ra	001	HER	-0.5	1.049	11.913					

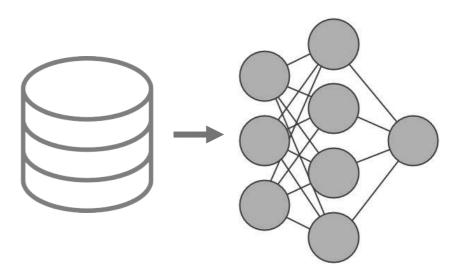
Chemical and Biological Engineering

Reaction pathway visualization

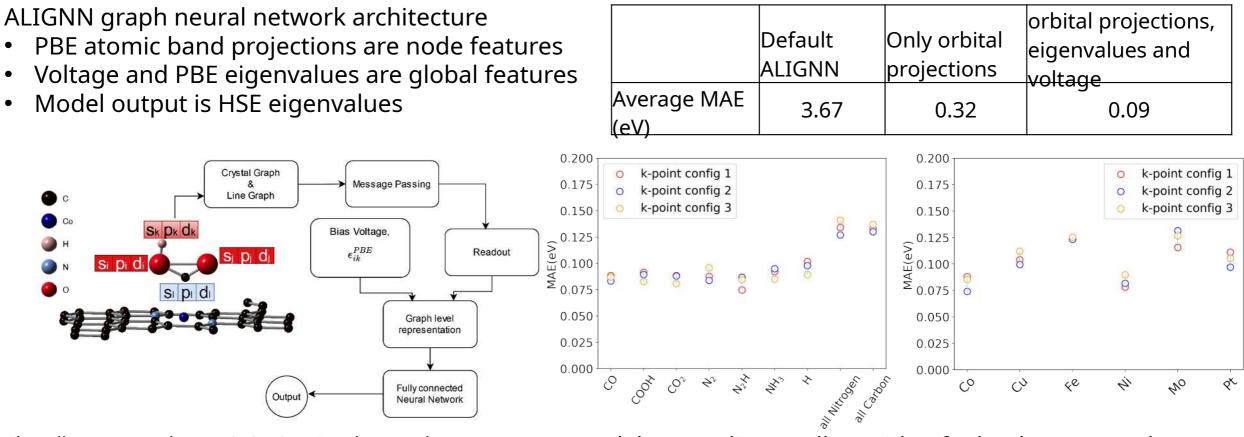

NRR Reaction for Ru36 (211) Beyond-DFT Electrochemistry with -0.5 V _____ -0.25 V _____ 0 V Accelerated and Solvated Techniques DB Reactions Calculation details BEAST BEAST DB Adsorbates (No) ΦØ **BEAST Database Reactions** N2H* 80 0 V nd F 0.936 eV Select Search Criteria: ö Search Text REMOVE Catalyst Elements -1 Ru ADD SEARCH CRITERIA SEARCH N2 N2* N2H^a NNH2¹ NH2* 2NH3 Select Columns to Display: Select... \sim Overview **DFT Structure** 1 **Catalyst Elements Catalyst Facet Limiting Potential Energetic Span** Reaction Type Potential **Potential Plots** Select Plot 🔻 **Catalyst Elements** Ru P Ru P Ru P Ru P Ru 010 HER 0 0 0.269 **Catalyst Facet** 211 Same Active Site Different Active Site -0 1 Adsorbate Formula N2H1 Ru 211 NRR -0.25 5.26 4.809 -0.2 Number Of Adsorbates 1 -0.3 -0.4 Ru 211 NRR -0.5 8.044 6.246 **Applied** Potential 0 V vs SHE -0.5 -0.6 **Related Reaction** NRR Ru 211 NRR 0 2.485 3.357 -0.7 -0.8 211 HER -0.25 0.292 Ru 0.708 -0.9 **DFT Results** -1.0 -1.1 HER Ru 211 -0.5 1.001 0.999 -0.6140 eV **Adsorption Energy** -0.5 -0.4 -0.3 -0.2 -0.1 Applied Potential (eV) 0.6587 Net Charge State Ru 211 HER 0 0 0.419

Chemical and Biological Engineering

Capabilities


1. Individual system studies

2. Material space screening


3. Statistical model training

Chemical and Biological Engineering

Learned HSE eigenvalues with PBE data at constant voltage

Choudhary, K.; et al. Atomistic Line Graph Neural Network for Improved Materials Property Predictions. Model generalizes well outside of adsorbates/metals seen in training set

Future database developments

Adoption of pymatgen ecosystem of workflow code (immediate priority)

Jobflow pymolgen Custodian

User submission acceptance (1 year)

Greater material space and reactions coverage (ongoing) Surface speciation data (immediate priority) More complex mechanisms of existing data (1 year)

Acknowledgements

Database Developers:

Joshua Quinton – RPI Rachel Hurst – NREL Struan Clark – NREL Jacob Clary – NREL

Advisors:

Charles Musgrave – CU Boulder Derek Vigil-Fowler – NREL Ravishankar Sundararaman – RPI **Colleagues:** Sophie Gerits – CU Boulder Benjamin Rich– CU Boulder

