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Electrochemistry is hard!

CO,RR, ORR
* Diversity and dynamics
 Combinatorial space of elements
e Bulk vs reduced dimensional
* |dentity of active site, mechanism
 Surface structure and reconstruction
e Defects
* Complex reaction pathways involvinga 5\“ e
spectator species e

* Electrolyte identity, concentration = T ceeeet
° pH ~100 species

~200 reactions

* Applied potential
e Kinetic and thermodynamic considerations
* Transport/morphology

[ J
Nat. Comm. 8, 14621 (2017)

>2,000 pathways
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Result: chemical intuition plays big role

* Often unclear what governs choices
* Example: CO, reduction on Sn/Sn0O

ACS Catal. 2015, 5, 5,3148-3156

Conditions:

e Sn thin films;

« Potentials: -1 to-2.4 vs Ag/AgCI ACS Catal. 2015, 5, 12, 7498-7502
0.1 MK2SO4 electrolyte Conditions:

« pH=4.4

« Sn02 NPs on graphene oxide

« Potentials: -0.25t0 -1.5 vs Ag/AgCl
ACS Catal. 2017, 7, 7, 4822-4827 * NaOH

 pH=28.5-12 (alkaline conditions avoid

Conditions: Sn02 reduction)

« Metallic Sn foil; pretreatment removed
excess oxide from the surface, leaving only
a native oxide

* Potentials: -0.4 to-1.3 V vs. RHE

0.1 M KHCO; electrolyte
* pH=6.8 credit: Carrie Farberow




Experimental efforts on protocols




Suggested Testing Procedure for Round Robin Matrix

Cell Assembly and Conditioning as specified. Test start.

Measure CV and EIS in H,/N, at BOT as specified.

Flow O, on cathode. Wait until OCV is stable (e.g. 5 min).

Measure activity in H,/0, as specified.

Flow air on cathode. Wait until OCV is stable (e.g. 5 min).

Measure pol curve in H,/air as specified.

Change T, RH, and P conditions for next test. Wait at least 30 min for equilibration.

Measure pol curve in H,/air at 250 kPa, 75% RH, 95 °C as specified.

Flow N, on cathode and set back T = 80C, P=150 kPa, RH=100%. Wait until OCV decreases to ~0.1 V or for at least 20
min. If OCV does not decrease enough, reduce the residual O, adsorbed on the catalyst, in order to have a CV shape
“centered” around O current.

Measure CV and EIS in H,/N, at BOT again (CV and EIS may vary after measuring the first pol curve due to full hydration
of CL and ionomer due to water generation).

Flow air on cathode. Wait until OCV is stable (e.g. 5 min).

Start AST cycling up to 100 cycles (should take ~10 min = helpful to set cathode N, purge delay). When finished (or
asap after finishing) start to flow N, on cathode in case the test is going to be paused for long time (e.g. overnight) to
not leave the cell under OCV conditions for too long.

Flow N, on cathode. Wait until OCV decreases to ~0.1 V or for at least 20 min. If OCV does not decrease enough, reduce
the residual O, adsorbed on the catalyst, in order to have a CV shape “centered” around O current.

Measure CV and EIS in H,/N, as described before.

Flow O, on cathode. Wait until OCV is stable (e.g. 5 min).

Measure activity in H,/0, as specified.

Flow air on cathode. Wait until OCV is stable (e.g. 5 min).

Measure pol curve in H,/air as described before.

Flow air on cathode. Wait until OCV is stable (e.g. 5 min).
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Why build a computational electrochemistry database?

* Quick access to structures, energies, properties of
catalysts for researchers working on catalysts in
database (or related)

* Increases ability to quickly get started with confidence,
speeds catalyst discovery

* Properties: give fundamental understanding of what’s
driving observed catalytic activity and selectivity
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Materials databases

* Materials Project, NOMAD, OQMD, AFLOW, AiiDA

e Can quickly obtain various materials properties, e.g.

relative stability, structure, and electronic structure,
from a simple database query
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Materials databases

* Materials Project, NOMAD, OQMD, AFLOW, AiiDA

e Can quickly obtain various materials properties, e.g.

relative stability, structure, and electronic structure,
from a simple database query

Formation E Above Hull N Band Gap Density

Materials Id Formula Spacegroup Volume Nsites X
Energy V)  (eV) (V) (gm/cc)

mp-2815  MoS; P6ymmc  -1.202 0 1.465 131.151 6 4.053
mp-1434  MoS, R3m -1.201 0 1.578 62.649 3 4243
mp- MoS P3m1 1.201 0.001 1.491 350.447 12 3.034
1027525 2 . . . . :

il MoS PBmM2 1.201 0.001 1.509 284.872 9 2.799
1025874 Z . . . . :

i MoS P3m1 1.2 0.001 1.554 219.296 6 2.424
1023939 Z : : . : :

mp- MoS P6a/mmc 1.2 0.001 1.336 123.452 6 4.306
1018809 Z . : ; : :

https://materialsproject.org/



Materials databases

* Materials Project, NOMAD, OQMD, AFLOW, AiiDA

e Can quickly obtain various materials properties, e.g.
relative stability, structure, and electronic structure,
from a simple database query
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Materials databases

* Materials Project, NOMAD, OQMD, AFLOW, AiiDA

e Can quickly obtain various materials properties, e.g.
relative stability, structure, and electronic structure,
from a simple database query
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FACEBOOK Al Carnegie Mellon University

Open Catalyst Project

Using Al to model and discover new catalysts to
address the energy challenges posed by climate
change.




Existing catalysis databases: Open Catalyst Project

* Team: Facebook, Carnegie Mellon

* Goal/philosophy: use machine learning to replace DFT
relaxations that find adsorbed states of molecules on
catalysts to speed up catalyst screening and discovery

* Points of interest
- Big data, but not lowest energy states
- No Ul since meant for ML
- No treatment of applied potential/solvent
- Not based on promising catalysts




Existing catalysis databases: Catalyst Property Database

Chemical Catalysis for Bioenergy

Catalyst Property Database 0 Cat




Existing catalysis databases: Catalyst Property Database

e Team: ChemCatBio EMN, NREL

e Goal: (1) reduce time searching literature for previously
computed catalytic pathways by providing data in a
central, searchable location, (2) enable accelerated
discovery of catalyst descriptors, property correlations

* Points of interest
- Less data in initial set, but labeled if lowest energy states
- Excellent Ul, metadata
- No treatment of applied potential/solvent
- Not based on promising catalysts

AV



Existing catalysis databases: Catalysis Hub




Existing catalysis databases: Catalysis Hub

 Team: SUNCAT, Stanford

e Goal: (1) provide fully self-contained data for predicting
experimental observations from electronic structure
calculations (primary), (2) starting point for training and
developing machine-learning based approaches
accelerating quantum chemical simulations (secondary)

e Points of interest

Moderate data
Good Ul, but so-so metadata and data standardization

Good post-processing tools (pourbaix diagrams, volcano plots,
etc.)

No treatment of applied potential/solvent

Not based on promising catalysts i I




Existing catalysis databases: Summary

e Catalysis Hub (Stanford), Open Catalyst Project
(CMU/Facebook), Catalyst Property Database (NREL)

* Less complete than materials databases because
calculations are more expensive, catalysts are more
diverse than materials

* Fewer properties, e.g. PDOS, bond orders, than
materials databases

e Simpler or no APIs

- Specifying catalytic reactions harder than
specifying materials “



BEAST DB
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BEAST DB

* Thrust 1: develop next generation of
electrochemical solvation models with
detailed double layer structure

* Thrust 2: beyond-DFT electrochemistry at
exascale

* Thrust 3: apply techniques to electrocatalytic
systems, forming BEAST-DB database for first- ‘

principles electrochemistry




BEAST DB

* Team: NREL, CU, RPI, LBNL, U. of S. Carolina

e Goal: (1) provide insight into how changes in
electrochemical conditions lead to observed activity and
selectivity, (2) give beyond-DFT accuracy for reaction
energetics and electronic structuring using ML

e Points of interest

Allow variation of electrolyte, applied potential and easy
comparison of variations with these knobs

Variety of electronic descriptors (PDOS, Bader charges, bond
orders, wavefunction localization), electrolyte descriptors for
rationalizing changes in behavior with different conditions

Base catalyst models on which are already promising
Beyond-DFT accuracy for reaction energetics (planned)

Smaller range of catalysts (targeted) “




BEAST DB

CO,RR CO,RR, ORR
Cu, Ag i M-N-C
/" HER,NR

00000

QA dichalce ,y-nuiy

OER
IrO,, RuO,

Fig. 14. Promising electrocatalysts and
chemistries proposed as a starting point for
our electrochemical database, BEAST DB.

AV



BEAST DB

* Reaction energetics, and
electrolyte and electronic
properties (e.g. PDOS)

e Start with most promising
facets, electrolytes,
electrolyte concentrations,
and potential ranges for
chosen catalysts

e Use ML to obtain beyond-
DFT accuracy

Metal phosphides

/" HER,NR )

Qy'«!:ll'l :'g'nl‘.fj

IrO,, RuO,

Fig. 14. Promising
chemistries proposed

our ¢lectrochemical database, BEAST DB.

electrocatalysts and
as a starting point for

AV
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e BEAST dataset contains 80 unique bulk compositions, 120
surface facets, over 3000 adsorbate calculations
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e BEAST dataset contains 80 unique bulk compositions, 120
surface facets, over 3000 adsorbate calculations

* Chemistries: HER, OER, CO2R, NRR, ORR, partial methane
oxidization reaction (pMOR) to methanol

 Materials classes: d-block metals, metal oxides, 2D
chalcogenides, single-atom alloys (SAAs), 2D metalnitrogen-
carbon surfaces (MNCs), and multinary Chevrel phase (CP)
chalcogenides

* Properties: adsorption energies, converged structure
eometries, A electrons, orbital-projected density of states
DOS), surface-adsorbate pDOS overlap, Bader charge
istributions
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BEAST DB: current status

e BEAST dataset contains 80 unique bulk compositions, 120
surface facets, over 3000 adsorbate calculations

* Chemistries: HER, OER, CO2R, NRR, ORR, partial methane
oxidization reaction (pMOR) to methanol

 Materials classes: d-block metals, metal oxides, 2D
chalcogenides, single-atom alloys (SAAs), 2D metalnitrogen-
carbon surfaces (MNCs), and multinary Chevrel phase (CP)
chalcogenides

* Properties: adsorption energies, converged structure
eometries, A electrons, orbital-projected density of states
DOS), surface-adsorbate pDOS overlap, Bader charge
istributions

 BEAST DB backend is close to being completed and Ul is

currently being implemented ‘



BEAST DB: Ul development

Home  Web Application  API User Guide

Search Materials

‘ Select adsorbate

| Select catalyst

+ Add criterion

*Results in Beast DB Standard ()

Canonical Eads(eV) Gads(eV)

First Previous 1 2 3 Next Last




BEAST DB: Ul development

Home  Web Application APl User Guide

Search Materials

‘ Select adsorbate

Select catalyst |

Add criterion

Select criterion |

Unigue ID ’
Facet N *Results in Beast D8 Standard
Reference Species >
Canonical E_ads >

First Previous 1 2 3 Next Last




BEAST DB: Ul development

.
Home  Web Application  API User Guide

Search Materials

H

Zn

+ Add criterion

*Results in Beast D8 Standard ()

Unique 1D Adsorbate

Oxidation State

123445 0o -+ H2 04 0.12 0.68
444112 ] H2 H20 055 0.4 0.78
444112 O s H20 058 0.4 0.78
444112 O H20 055 0.4 0.78

First Previous 1 2 3 Next Last




BEAST DB: current status

e
Home  Web Application  API User Guide
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BEAST DB: Ul development

Home  Web Application  API User Guide

About BEAST About BEAST
Disclaimers and Legal Computational medeling of electrochemistry is limited in accuracy by

Using the Web Application 1) the lack of a universal framework that efficiently freats arbitrary slectrolytes. solvents and applied potentials

A with sufficient detad and fidelity 1o realisticaly and accurately model electrochermical systems, and
Searching 2) the deficlercies of density functional theory (DFT), the pamary computational tocl for reaction modedng, in
Vi lization describing charge transfer and reaction bariers. Accurate reaction barriers are crucial for connecting
Isualizations pradictions to measured rates of chemical reactions, and quantum chemical techniques that may be accurate

Uploading Data enough are not yet practicable for heterogensous and slectrocatalyst systems invoiving solc-liquid interfaces.
Downloading Data Funded by the DoE Computational Chemical Sciences program under DE-SC0022247 starting October 2021,
: the BEAST collaboration will address both challenges abave by developing accurate and efficient exascale-

Using the API ready solvated beyord-DFT methods.
Searching The first ingredient in these methods are accurate atomic-scale electrolyte solvation models that capture the

equiibrium effect of slectrolyte in a single electronic structure calculation

. The second ingredient is the incorporation of GW many-body perturbation theory and the random phase
Uploading Data approximation (RPA] total energy, which are accurate methods beyond DFT, into solvated and grand-
. canonical techniques to make them ticable for electrochemistry including sclvation and bias effects.
Downloading Data 5 e "

Visualizations

Finally. In addition to optimizing these combined techniques for exascale computing, we will also make them
more widely applicable usng machine leaming (ML) spgroaches trained 1o a beyond-DFT electrochemical
catabase to make RPA-quality predictions at DFT cost.
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BEAST DB: community involvement

 Want contributions from researchers in the
electrocatalysis community, like YOU

* Planning on having public workshop in the next year to
solicit ideas further development of BEAST DB

* BEAST team has developed uniform set of
computational parameters for database that will be
required and checked for community upload

AV






