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other descriptors for range of 
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PNAS 2017 114 (42) E8812-E8821
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Electrochemistry is hard!

• Diversity and dynamics
• Combinatorial space of elements
• Bulk vs reduced dimensional
• Identity of active site, mechanism
• Surface structure and reconstruction
• Defects
• Complex reaction pathways involvingintermediates, 

spectator species
• Electrolyte identity, concentration
• pH
• Applied potential
• Kinetic and thermodynamic considerations
• Transport/morphology
• ….

Nat. Comm. 8, 14621 (2017)
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Result: chemical intuition plays big role

• Often unclear what governs choices
• Example: CO2 reduction on Sn/SnO

Conditions: 
• Sn thin films; 
• Potentials: --1 to -2.4 vs Ag/AgCl
• 0.1 M K2SO4 electrolyte
• pH = 4.4

Conditions: 
• SnO2 NPs on graphene oxide
• Potentials: --0.25 to -1.5 vs Ag/AgCl
• NaOH
• pH = 8.5 – 12 (alkaline conditions avoid 

SnO2 reduction)Conditions: 
• Metallic Sn foil; pretreatment removed 

excess oxide from the surface, leaving only 
a native oxide

• Potentials: -0.4 to -1.3 V vs. RHE
• 0.1 M KHCO3 electrolyte
• pH = 6.8

ACS Catal. 2015, 5, 5, 3148–3156

ACS Catal. 2015, 5, 12, 7498-7502

ACS Catal. 2017, 7, 7, 4822–4827

credit: Carrie Farberow
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Experimental efforts on protocols



Suggested Testing Procedure for Round Robin Matrix

- Cell Assembly and Conditioning as specified. Test start.

- Measure CV and EIS in H2/N2 at BOT as specified. 
- Flow O2 on cathode. Wait until OCV is stable (e.g. 5 min).
- Measure activity in H2/O2 as specified. 
- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).
- Measure pol curve in H2/air as specified.
- Change T, RH, and P conditions for next test. Wait at least 30 min for equilibration.
- Measure pol curve in H2/air at 250 kPa, 75% RH, 95 °C as specified.
- Flow N2 on cathode and set back T = 80C, P=150 kPa, RH=100%. Wait until OCV decreases to ~0.1 V or for at least 20 

min. If OCV does not decrease enough, reduce the residual O2 adsorbed on the catalyst, in order to have a CV shape 
“centered” around 0 current.

- Measure CV and EIS in H2/N2 at BOT again (CV and EIS may vary after measuring the first pol curve due to full hydration 
of CL and ionomer due to water generation).

- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).

- Start AST cycling up to 100 cycles (should take ~10 min à helpful to set cathode N2 purge delay). When finished (or 
asap after finishing) start to flow N2 on cathode in case the test is going to be paused for long time (e.g. overnight) to 
not leave the cell under OCV conditions for too long. 

- Flow N2 on cathode. Wait until OCV decreases to ~0.1 V or for at least 20 min. If OCV does not decrease enough, reduce 
the residual O2 adsorbed on the catalyst, in order to have a CV shape “centered” around 0 current.

- Measure CV and EIS in H2/N2 as described before.
- Flow O2 on cathode. Wait until OCV is stable (e.g. 5 min).
- Measure activity in H2/O2 as specified. 
- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).
- Measure pol curve in H2/air as described before.
- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).
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• Quick access to structures, energies, properties of 
catalysts for researchers working on catalysts in 
database (or related)
• Increases ability to quickly get started with confidence, 

speeds catalyst discovery
• Properties: give fundamental understanding of what’s 

driving observed catalytic activity and selectivity
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Existing catalysis databases: Open Catalyst Project

• Team: Facebook, Carnegie Mellon

• Goal/philosophy: use machine learning to replace DFT 
relaxations that find adsorbed states of molecules on 
catalysts to speed up catalyst screening and discovery

• Points of interest
- Big data, but not lowest energy states
- No UI since meant for ML
- No treatment of applied potential/solvent
- Not based on promising catalysts



NREL    |    26

Existing catalysis databases: Catalyst Property Database



NREL    |    27

Existing catalysis databases: Catalyst Property Database

• Team: ChemCatBio EMN, NREL

• Goal: (1) reduce time searching literature for previously 
computed catalytic pathways by providing data in a 
central, searchable location, (2) enable accelerated 
discovery of catalyst descriptors, property correlations

• Points of interest
- Less data in initial set, but labeled if lowest energy states
- Excellent UI, metadata
- No treatment of applied potential/solvent
- Not based on promising catalysts
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Existing catalysis databases: Catalysis Hub

• Team: SUNCAT, Stanford

• Goal: (1) provide fully self-contained data for predicting 
experimental observations from electronic structure 
calculations (primary), (2) starting point for training and 
developing machine-learning based approaches 
accelerating quantum chemical simulations (secondary)

• Points of interest
- Moderate data
- Good UI, but so-so metadata and data standardization
- Good post-processing tools (pourbaix diagrams, volcano plots, 

etc.)
- No treatment of applied potential/solvent
- Not based on promising catalysts



NREL    |    30

Existing catalysis databases: Summary

• Catalysis Hub (Stanford), Open Catalyst Project 
(CMU/Facebook), Catalyst Property Database (NREL)

• Less complete than materials databases because 
calculations are more expensive, catalysts are more 
diverse than materials

•  Fewer properties, e.g. PDOS, bond orders, than 
materials databases

• Simpler or no APIs
- Specifying catalytic reactions harder than                      

specifying materials 
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BEAST DB

• Thrust 1: develop next generation of 
electrochemical solvation models with 
detailed double layer structure

• Thrust 2: beyond-DFT electrochemistry at 
exascale

• Thrust 3: apply techniques to  electrocatalytic 
systems, forming BEAST-DB database for first-
principles electrochemistry
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BEAST DB

• Team: NREL, CU, RPI, LBNL, U. of S. Carolina

• Goal: (1) provide insight into how changes in 
electrochemical conditions lead to observed activity and 
selectivity, (2) give beyond-DFT accuracy for reaction 
energetics and electronic structuring using ML

• Points of interest
- Allow variation of electrolyte, applied potential and easy 

comparison of variations with these knobs
- Variety of electronic descriptors (PDOS, Bader charges, bond 

orders, wavefunction localization), electrolyte descriptors for 
rationalizing changes in behavior with different conditions

- Base catalyst models on which are already promising
- Beyond-DFT accuracy for reaction energetics (planned)
- Smaller range of catalysts (targeted)
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BEAST DB

• Reaction energetics, and 
electrolyte and electronic 
properties (e.g. PDOS)

• Start with most promising 
facets, electrolytes, 
electrolyte concentrations, 
and potential ranges for 
chosen catalysts

• Use ML to obtain beyond-
DFT accuracy
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BEAST DB: current status

• BEAST dataset contains 80 unique bulk compositions, 120 
surface facets, over 3000 adsorbate calculations

• Chemistries: HER, OER, CO2R, NRR, ORR, partial methane 
oxidization reaction (pMOR) to methanol
• Materials classes: d-block metals, metal oxides, 2D 

chalcogenides, single-atom alloys (SAAs), 2D metalnitrogen-
carbon surfaces (MNCs), and multinary Chevrel phase (CP) 
chalcogenides
• Properties: adsorption energies, converged structure 

geometries, Δ electrons, orbital-projected density of states 
(pDOS), surface-adsorbate pDOS overlap, Bader charge 
distributions

• BEAST DB backend is close to being completed and UI is 
currently being implemented
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BEAST DB: community involvement

• Want contributions from researchers in the 
electrocatalysis community, like YOU

• Planning on having public workshop in the next year to 
solicit ideas further development of BEAST DB

• BEAST team has developed uniform set of 
computational parameters for database that will be 
required and checked for community upload
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BEAST DB


