JDFT calculations in practice with JDFTx

The BEAST collaboration

1% Annual BEAST Workshop, 2022

August 15, 2022

U.S. DEPARTMENT OF

ENERGY

Office of Science

Award # DE-5C0022247

JDFTx features

» JDFTx is a fully-featured plane-wave DFT code

» Focus here: capabilities for electrochemistry

» We'll cover the underlined: small fraction of what JDFTx can do!
» Many more tutorials on https://jdftx.org

Electronic Fluid

> Exchange-correlation: semilocal, meta-GGA, > Linear solvation: GLSSA13, SCCS, CANDLE
EXX-hybrids, DFT+U, DFT-D2, LibXC P Nonlinear solvation: GLSSA13
>

P Pseudopotentials: norm-conserving and ultrasoft Nonlocal solvation: SALSA

P Noncollinear magnetism / spin-orbit coupling » JDFT with classical DFT fluids

> Algorithms: variational minimization, SCF Outputs (selected)

> Grand canonical (fixed potential) for electrochemistry P DOS, optical matrix elements, polarizability etc.

> Truncated Coulomb for 0D, 1D, 2D or 3D periodicity > Wannier functions and ab initio tight-binding

> Custom external potentials, electric fields P Electron-electron and electron-phonon scattering
P Charged-defect corrections: bulk and interfacial Interfaces

> lon/lattice optimization with constraints » Solvated QMC with CASINO

» Ab initio molecular dynamics > Atomistic Simulation Environment (NEB, MD etc.)
>

Vibrational modes, phonons and free energies P Visualization: VESTA, XCrySDen, PyMOL

https://jdftx.org

The JDFTx input file

#—— Pseudopotentials
ion—species GBRV/S$ID_pbe.uspp #GBRV family
elec—cutoff 20 100 #Ecuts for psi and rho
#—— Geometry
lattice Hexagonal 10.53 30.0 #a and ¢ in bohrs
coulomb—interaction Slab 001 #Make z nonperiodic
coulomb—truncation—embed 0 0 0 #Specify center
coords—type Lattice #fractional coordinates

ion Pt 0.33333 —0.33333 —0.288 0
ion Pt 0.33333 —0.83333 —0.288 0
ion Pt 0.83333 —0.83333 —0.288 0
ion Pt 0.83333 —0.33333 —0.288 0
ion Pt 0.16667 —0.16667 —0.144 0
ion Pt 0.16667 —0.66667 —0.144 0
ion Pt 0.66667 —0.16667 —0.144 0
ion Pt 0.66667 —0.66667 —0.144 0
ion Pt 0.000 0.000 0.000 0
ion Pt 0.000 —0.500 0.000 0
ion Pt 0.500 0.000 0.000 0
ion Pt 0.500 —0.500 0.000 0 #0 => fixed
ion O 0.152 —0.079 0.155 1 #1 => free
ion O —0.152 +0.079 0.155 1
ion C 0.000 0.000 0.190 1 Planar 00 1
ion H 0.000 0.000 0.260 1

ionic—minimize nlterations 10 #Optimize geometry
#—— Electronic
kpoint—folding 6 6 1
elec—smearing Cold 0.01
target—mu —0.160

#— Fluid
fluid LinearPCM
pcm—variant CANDLE
fluid —solvent H20
fluid —cation Na+ 1.
fluid —anion F— 1.
#—— Outputs
dump lonic lonicPositions ElecDensity BoundCharge
dump—name test.$VAR #Output filename pattern

#Gamma—centered k—mesh
#Select cold smearing
#Fix echem potential

#Class of solvation model
#Specific model within class
#Aqueous electrolyte

#1 mol/L Na+ cation

#1 mol/L F— anion

v

Free-format input file with one
command per line

Command order does not matter
(except the order of ions)

Each documented extensively at
https://jdftx.org/Commands.html

Sensible defaults: input can be brief

Hartree atomic units throughout

Full example here: formate ion
adsorbed on 2x2, 3-layer biased,
solvated Pt(111)

@ (b) T

QMS’A

https://jdftx.org/Commands.html

Geometry

lattice Hexagonal 10.53 30.0 #a and c in bohrs
coords—type Lattice #fractional coordinates
ion Pt 0.33333 —-0.33333 —0.288 0
ion Pt 0.33333 —-0.83333 —0.288 0
ion Pt 0.83333 —-0.83333 —-0.288 0
ion Pt 0.83333 —-0.33333 —-0.288 0

> Specify lattice system, or manually specify lattice vectors
» Specify ionic positions in fractional or Cartesian coordinates

Non-periodic geometries

coulomb—interaction Slab 001 #Make z nonperiodic
coulomb—truncation—embed 0 0 O #Specify center

» Plane-wave DFT is intrinsically periodic

Emulate non-periodic geometries by truncated Cpulomb interactions
Important: wave functions are still expanded in Fourier coefficients

Leave just enough margin to let wave functions/decay to zero

JDFTx supports slab, wire or isolated geometries (2D, 1D or 0D periodic)

Electronic DFT parameters

ion—species GBRV/S$ID _pbe.uspp #Pseudopotentials

elec—ex—corr gga—PBE #Default XC
elec—cutoff 20 100 #KE Cutoff on PWs
kpoint—folding 6 6 1 #Gamma—centered k—mesh

elec—smearing Cold 0.01 #To sample Fermi surface

>
>
>
>
>

Must specify pseudopotials, individually or as a set
Exchange-correlation (XC) is PBE GGA by default

Basis set controlled by plane-wave kinetic energy cutoff (Ejp)
Brillouin zone sampling specified by k-mesh size

Several smearing options for metals (Fermi, Gauss, Cold, MP1)

Actions

electronic—minimize energyDiffThreshold 1E-7 #or:
electronic —=SCF energyDiffThreshold 1E—7

ionic—minimize nlterations 10 #Optimize geometry

» Kohn-Sham DFT solvable by two independent approaches:

» Variational minimization (default, more robust)
> Self-Consistent Field iteration (can be faster)

» Prefer the more-stable minimization for grand-canonical DFT

> Geometry optimization of ions and lattice (not on by default)

Outputs and continuation

initial —state test.$VAR #Start from checkpoint

dump—name test.$VAR #Qutput filename pattern
dump End BoundCharge #For Visualization at end
dump lonic State #Checkpoint every ionic step

» Full control over what, when and how to name outputs

» Example:
> Load from checkpoints saved in test.*
> Save outputs in test.*
> Write solvent charge response at end (will be test.nbound)
> Write checkpoint every ionic step (will be test.ionpos, test.wfns, test.fillings,

test.eigenvals)

» See documentation of dump command for full list of options

Solvation

fluid LinearPCM #Class of solvation model
pcm—variant CANDLE #Specific model within class
fluid —solvent H20 #Aqueous electrolyte
fluid —cation Nat+ 1. #1 mol/L Na+ cation
fluid —anion F— 1. #1 mol/L F— anion

Specify type of fluid: none, a few implicit options, classical DFT
For implicit solvent model, select variant (here: CANDLE)

CANDLE supports H20 and CH3CN (acetonitrile)
Implicit electrolyte is always non-adsorbing, recommend always use NaF

pr

>
>
> Select solvent, and optionally electrolyte
>
>

10

Grand-canonical DFT

target—mu —0.160 #Fix echem potential

> Specify absolute electron chemical potential in Hartrees: that's it!
» Need to convert potential U relative to reference electrode to absolute scale

> Essentially, u = —(U + V4ef)/27.21, where V¢ is absolute potential of
reference electrode below vacuum level

» For Standard Hydrogen electrode, Vsye = 4.66 eV calibrated for the
CANDLE solvation model

» Important: MUST specify electrolyte for GC-DFT to be sensible!

Jr

11
Solvation and electrochemistry workflow

1. Converge vacuum calculation (electronic and geometry)
2. Solvate at fixed charge / neutral
3. Apply bias if needed

Note: JDFTx will automatically run vacuum calculations where needed to get a
reasonable starting point. We will use this in the tutorials, but recommend
converging vacuum separately in production calculations.

pr

12

Parallelization

» JDFTx is a hybrid MPI-threads code

» On cori, we will often use the 32 physical cores as:
srun -n 2 -c 16 --hint=nomultithread jdftx -i in | tee out
which means

» Run 2 processes with 16 threads each
»> Don't use hyperthreaded cores
> Take input from file ‘in’ and mirror output to terminal and file ‘out’

12

Parallelization

>
>

v

JDFTx is a hybrid MPI-threads code
On cori, we will often use the 32 physical cores as:
srun -n 2 -c 16 --hint=nomultithread jdftx -i in | tee out

which means

» Run 2 processes with 16 threads each
»> Don't use hyperthreaded cores
> Take input from file ‘in’ and mirror output to terminal and file ‘out’

MPI parallelization in JDFTx is over k-points and spin only
Look for ‘nStates’ in output file using a dry run ‘jdftx -ni in'
Determine number of MPI processes based on ‘nStates’

12
Parallelization
» JDFTx is a hybrid MPI-threads code
» On cori, we will often use the 32 physical cores as:
srun -n 2 -c 16 --hint=nomultithread jdftx -i in | tee out

which means

» Run 2 processes with 16 threads each
»> Don't use hyperthreaded cores
> Take input from file ‘in’ and mirror output to terminal and file ‘out’

MPI parallelization in JDFTx is over k-points and spin only
Look for ‘nStates’ in output file using a dry run ‘jdftx -ni in'
Determine number of MPI processes based on ‘nStates’

vvyyy

In the tutorials, to demonstrate best practices, we will use 1 cori node as:
> Single process with entire shared-memory socket (-n 1 -c 16) for molecule /
ion calculations with nStates = 1
> Many processes with one core each (-n 32 -c 1) for bulk solid calculations
with large nStates
> One process per socket (-n 2 -c 16) for solvated / biased surface
calculations with intermediate values of nStates
(Our examples with nStates = 10 could be run over five nodes ‘
y o~

with -n 10 -c 16, but we will keep to one node for the tutorial.)

