

Derek Vigil-Fowler 1st Annual BEAST workshop 08/16/22

 Beyond-DFT Electrochemistry with Accelerated and Solvated Techniques Database

 Will have adsorption energies, other descriptors for range of common electrocatalysts, chemistries, use ML to obtain beyond-DFT accuracy

 Beyond-DFT Electrochemistry with Accelerated and Solvated Techniques Database

 Will have adsorption energies, other descriptors for range of common electrocatalysts, chemistries, use ML to obtain beyond-DFT accuracy

Electrochemistry is hard!

Electrochemistry is hard!

• Diversity and dynamics

Electrochemistry is hard!

- Diversity and dynamics
 - Combinatorial space of elements
 - Bulk vs reduced dimensional
 - Identity of active site, mechanism
 - Surface structure and reconstruction
 - Defects
 - Complex reaction pathways involving intermediates, spectator species
 - Electrolyte identity, concentration
 - pH
 - Applied potential
 - Kinetic and thermodynamic considerations
 - Transport/morphology

```
•••••
Nat. Comm. 8, 14621 (2017)
```


Result: chemical intuition plays big role

Result: chemical intuition plays big role

• Often unclear what governs choices

Result: chemical intuition plays big role

- Often unclear what governs choices
- Example: CO₂ reduction on Sn/SnO

ACS Catal. 2015, 5, 5, 3148-3156

Conditions:

- Sn thin films;
- Potentials: --1 to -2.4 vs Ag/AgCl
- 0.1 M K2SO4 electrolyte
- pH = 4.4

ACS Catal. 2017, 7, 7, 4822–4827

Conditions:

- Metallic Sn foil; pretreatment removed excess oxide from the surface, leaving only a native oxide
- Potentials: -0.4 to -1.3 V vs. RHE
- 0.1 M KHCO₃ electrolyte
- pH = 6.8

ACS Catal. 2015, 5, 12, 7498-7502

Conditions:

- SnO2 NPs on graphene oxide
- Potentials: --0.25 to -1.5 vs Ag/AgCl
- NaOH
- pH = 8.5 12 (alkaline conditions avoid SnO2 reduction)

Experimental efforts on protocols

Suggested Testing Procedure for Round Robin Matrix

- Cell Assembly and Conditioning as specified. Test start.

- Measure CV and EIS in H_2/N_2 at BOT as specified.
- Flow O₂ on cathode. Wait until OCV is stable (e.g. 5 min).
- Measure activity in H_2/O_2 as specified.
- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).
- Measure pol curve in H_2 /air as specified.
- Change T, RH, and P conditions for next test. Wait at least 30 min for equilibration.
- Measure pol curve in H_2 /air at 250 kPa, 75% RH, 95 °C as specified.
- Flow N₂ on cathode and set back T = 80C, P=150 kPa, RH=100%. Wait until OCV decreases to ~0.1 V or for at least 20 min. If OCV does not decrease enough, reduce the residual O₂ adsorbed on the catalyst, in order to have a CV shape "centered" around 0 current.
- Measure CV and EIS in H₂/N₂ at BOT again (CV and EIS may vary after measuring the first pol curve due to full hydration of CL and ionomer due to water generation).
- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).
- Start AST cycling up to 100 cycles (should take ~10 min → helpful to set cathode N₂ purge delay). When finished (or asap after finishing) start to flow N₂ on cathode in case the test is going to be paused for long time (e.g. overnight) to not leave the cell under OCV conditions for too long.
- Flow N₂ on cathode. Wait until OCV decreases to ~0.1 V or for at least 20 min. If OCV does not decrease enough, reduce the residual O₂ adsorbed on the catalyst, in order to have a CV shape "centered" around 0 current.
- Measure CV and EIS in H_2/N_2 as described before.
- Flow O₂ on cathode. Wait until OCV is stable (e.g. 5 min).
- Measure activity in H_2/O_2 as specified.
- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).
- Measure pol curve in H₂/air as described before.
- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).

- Quick access to structures, energies, properties of catalysts for researchers working on catalysts in database (or related)
 - Increases ability to quickly get started with confidence, speeds catalyst discovery
 - Properties: give fundamental understanding of what's driving observed catalytic activity and selectivity

- Quick access to structures, energies, properties of catalysts for researchers working on catalysts in database (or related)
 - Increases ability to quickly get started with confidence, speeds catalyst discovery
 - Properties: give fundamental understanding of what's driving observed catalytic activity and selectivity
- Provide input for machine learning algorithms to get quantum mechanical accuracy at lower cost

- Quick access to structures, energies, properties of catalysts for researchers working on catalysts in database (or related)
 - Increases ability to quickly get started with confidence, speeds catalyst discovery
 - Properties: give fundamental understanding of what's driving observed catalytic activity and selectivity
- Provide input for machine learning algorithms to get quantum mechanical accuracy at lower cost
- Enable fair comparisons between electrochemical configurations across a diversity of conditions, e.g. electrolyte composition/concentration, pH, potential range.

- Quick access to structures, energies, properties of catalysts for researchers working on catalysts in database (or related)
 - Increases ability to quickly get started with confidence, speeds catalyst discovery
 - Properties: give fundamental understanding of what's driving observed catalytic activity and selectivity
- Provide input for machine learning algorithms to get quantum mechanical accuracy at lower cost
- Enable fair comparisons between electrochemical configurations across a diversity of conditions, e.g. electrolyte composition/concentration, pH, potential range.

Materials databases

- Materials Project, NOMAD, OQMD, AFLOW, AiiDA
- Can quickly obtain various materials properties, e.g. relative stability, structure, and electronic structure, from a simple database query

- Materials Project, NOMAD, OQMD, AFLOW, AiiDA
- Can quickly obtain various materials properties, e.g. relative stability, structure, and electronic structure, from a simple database query

- Materials Project, NOMAD, OQMD, AFLOW, AiiDA
- Can quickly obtain various materials properties, e.g. relative stability, structure, and electronic structure, from a simple database query

Materials Id 🍦	Formula 🍦	Spacegroup 🛊	Formation Energy (eV)	E Above Hull <u>,</u> (eV)	Band Gap (eV)	Volume 🍦	Nsites 🝦	Density (gm/cc)	ø
mp-2815	MoS ₂	P6 ₃ /mmc	-1.202	0	1.465	131.151	6	4.053	0
mp-1434	MoS ₂	R3m	-1.201	0	1.578	62.649	3	4.243	
mp- 1027525	MoS_2	P3m1	-1.201	0.001	1.491	350.447	12	3.034	D
mp- 1025874	MoS_2	P6m2	-1.201	0.001	1.509	284.872	9	2.799	0
mp- 1023939	MoS_2	P3m1	-1.2	0.001	1.554	219.296	6	2.424	0
mp- 1018809	MoS ₂	P6 ₃ /mmc	-1.2	0.001	1.336	123.452	6	4.306	

https://materialsproject.org/

- Materials Project, NOMAD, OQMD, AFLOW, AiiDA
- Can quickly obtain various materials properties, e.g. relative stability, structure, and electronic structure, from a simple database query

https://materialsproject.org/

Materials databases

- Materials Project, NOMAD, OQMD, AFLOW, AiiDA
- Can quickly obtain various materials properties, e.g. relative stability, structure, and electronic structure, from a simple database query

https://materialsproject.org/

- Quick access to structures, energies, properties of catalysts for researchers working on catalysts in database (or related)
 - Increases ability to quickly get started with confidence, speeds catalyst discovery
 - Properties: give fundamental understanding of what's driving observed catalytic activity and selectivity
- Provide input for machine learning algorithms to get quantum mechanical accuracy at lower cost
- Enable fair comparisons between electrochemical configurations across a diversity of conditions, e.g. electrolyte composition/concentration, pH, potential range.

Existing catalysis databases: Open Catalyst Project

Existing catalysis databases: Open Catalyst Project

FACEBOOK Al Carnegie Mellon University

Home Leaderboard Dataset Challenge Discuss

Open Catalyst Project

Using AI to model and discover new catalysts to address the energy challenges posed by climate change.

Existing catalysis databases: Open Catalyst Project

- Team: Facebook, Carnegie Mellon
- Goal/philosophy: use machine learning to replace DFT relaxations that find adsorbed states of molecules on catalysts to speed up catalyst screening and discovery

- Points of interest
 - Big data, but not lowest energy states
 - No UI since meant for ML
 - No treatment of applied potential/solvent
 - Not based on promising catalysts

Existing catalysis databases: Catalyst Property Database

Catalyst Property Database

Existing catalysis databases: Catalyst Property Database

- Team: ChemCatBio EMN, NREL
- Goal: (1) reduce time searching literature for previously computed catalytic pathways by providing data in a central, searchable location, (2) enable accelerated discovery of catalyst descriptors, property correlations
- Points of interest
 - Less data in initial set, but labeled if lowest energy states
 - Excellent UI, metadata
 - No treatment of applied potential/solvent
 - Not based on promising catalysts

Existing catalysis databases: Catalysis Hub

Existing catalysis databases: Catalysis Hub

- Team: SUNCAT, Stanford
- Goal: (1) provide fully self-contained data for predicting experimental observations from electronic structure calculations (primary), (2) starting point for training and developing machine-learning based approaches accelerating quantum chemical simulations (secondary)
- Points of interest
 - Moderate data
 - Good UI
 - Good post-processing tools (pourbaix diagrams, volcano plots, etc.)
 - No treatment of applied potential/solvent
 - Not based on promising catalysts

Existing catalysis databases: Summary

- Don't target promising catalysts, but do broader search
- Less complete than materials databases because calculations are more expensive, catalysts are more diverse than materials
- Fewer properties, e.g. PDOS, bond orders, than materials databases
- Simpler or no APIs
 - Specifying catalytic reactions harder than specifying materials

 Thrust 1: develop next generation of electrochemical solvation models with detailed double layer structure

Thrust 2: beyond-DFT electrochemistry at exascale

 Thrust 3: apply techniques to electrocatalytic systems, forming BEAST-DB database for firstprinciples electrochemistry

- Reaction energetics, and electrolyte and electronic properties (e.g. PDOS)
- Start with most promising facets, electrolytes, electrolyte concentrations, and potential ranges for chosen catalysts
- Use ML to obtain beyond-DFT accuracy

BEAST DB "demonstration"

BEAST DB "demonstration"

 Search feature similar to Catalyst Property Database, Catalysis Hub

BEAST DB "demonstration"

Total energy: -11526.2912 eV

AtomType	TotalNetCharge
С	3.676
Ν	-0.970
Fe	2.736

BEAST DB "demonstration"

Total energy: -11275.8951 eV

AtomType	TotalNetCharge
С	4.992
Ν	-0.778
Fe	2.841

BEAST DB

- Team: NREL, CU, RPI, LBNL, U of S. Carolina
- Goal: (1) provide insight into how changes in electrochemical conditions lead to observed activity and selectivity, (2) give beyond-DFT accuracy for reaction energetics and electronic structuring using ML

Points of interest

- Allow variation of electrolyte, applied potential and easy comparison of variations with these knobs
- Variety of electronic descriptors (PDOS, Bader charges, bond orders, wavefunction localization), electrolyte descriptors for rationalizing changes in behavior with different conditions
- Base catalyst models on which are already promising
- Beyond-DFT accuracy for reaction energetics (planned)
- Smaller range of catalysts (targeted)

- BEAST dataset contains 80 unique bulk compositions, 120 surface facets, over 3000 adsorbate calculations
- Chemistries: HER, OER, CO₂R, NRR, ORR, partial methane oxidization reaction (pMOR) to methanol.

- BEAST dataset contains 80 unique bulk compositions, 120 surface facets, over 3000 adsorbate calculations
- Chemistries: HER, OER, CO₂R, NRR, ORR, partial methane oxidization reaction (pMOR) to methanol.
- Materials classes: d-block metals, metal oxides, 2D chalcogenides, single-atom alloys (SAAs), 2D metalnitrogen-carbon surfaces (MNCs), and multinary Chevrel phase (CP) chalcogenides.
- Properties: adsorption energies, converged structure geometries, Δ electrons, orbital-projected density of states (pDOS), surface-adsorbate pDOS overlap, Bader charge distributions.

• BEAST DB backend and UI under construction in upcoming year

• Want contributions from researchers in the electrocatalysis community, like YOU

• Want contributions from researchers in the electrocatalysis community, like YOU

• Planning on having public workshop in the next 1-2 years to solicit ideas further development of BEAST DB

• Want contributions from researchers in the electrocatalysis community, like YOU

• Planning on having public workshop in the next 1-2 years to solicit ideas further development of BEAST DB

 BEAST team has developed uniform set of computational parameters for database that will be required and checked for community upload

