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Electrochemistry is hard!

• Diversity and dynamics

• Combinatorial space of elements

• Bulk vs reduced dimensional

• Identity of active site, mechanism

• Surface structure and reconstruction

• Defects

• Complex reaction pathways involving

intermediates, spectator species

• Electrolyte identity, concentration

• pH

• Applied potential

• Kinetic and thermodynamic considerations

• Transport/morphology

• ….
Nat. Comm. 8, 14621 (2017)
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Result: chemical intuition plays big role

• Often unclear what governs choices

• Example: CO2 reduction on Sn/SnO

Conditions: 

• Sn thin films; 
• Potentials: --1 to -2.4 vs Ag/AgCl

• 0.1 M K2SO4 electrolyte

• pH = 4.4
Conditions: 

• SnO2 NPs on graphene oxide
• Potentials: --0.25 to -1.5 vs Ag/AgCl

• NaOH

• pH = 8.5 – 12 (alkaline conditions avoid 

SnO2 reduction)
Conditions: 

• Metallic Sn foil; pretreatment removed 

excess oxide from the surface, leaving only 

a native oxide

• Potentials: -0.4 to -1.3 V vs. RHE

• 0.1 M KHCO3 electrolyte

• pH = 6.8

ACS Catal. 2015, 5, 5, 3148–3156

ACS Catal. 2015, 5, 12, 7498-7502

ACS Catal. 2017, 7, 7, 4822–4827

credit: Carrie Farberow
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Experimental efforts on protocols



Suggested Testing Procedure for Round Robin Matrix

- Cell Assembly and Conditioning as specified. Test start.

- Measure CV and EIS in H
2
/N

2
at BOT as specified. 

- Flow O
2

on cathode. Wait until OCV is stable (e.g. 5 min).

- Measure activity in H2/O2 as specified. 

- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).

- Measure pol curve in H2/air as specified.

- Change T, RH, and P conditions for next test. Wait at least 30 min for equilibration.

- Measure pol curve in H
2
/air at 250 kPa, 75% RH, 95 °C as specified.

- Flow N2 on cathode and set back T = 80C, P=150 kPa, RH=100%. Wait until OCV decreases to ~0.1 V or for at least 20 

min. If OCV does not decrease enough, reduce the residual O2 adsorbed on the catalyst, in order to have a CV shape 

“centered” around 0 current.

- Measure CV and EIS in H
2
/N

2
at BOT again (CV and EIS may vary after measuring the first pol curve due to full hydration 

of CL and ionomer due to water generation).

- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).

- Start AST cycling up to 100 cycles (should take ~10 min à helpful to set cathode N2 purge delay). When finished (or 

asap after finishing) start to flow N
2

on cathode in case the test is going to be paused for long time (e.g. overnight) to 

not leave the cell under OCV conditions for too long. 

- Flow N2 on cathode. Wait until OCV decreases to ~0.1 V or for at least 20 min. If OCV does not decrease enough, reduce 

the residual O2 adsorbed on the catalyst, in order to have a CV shape “centered” around 0 current.

- Measure CV and EIS in H2/N2 as described before.

- Flow O
2

on cathode. Wait until OCV is stable (e.g. 5 min).

- Measure activity in H
2
/O

2
as specified. 

- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).

- Measure pol curve in H2/air as described before.

- Flow air on cathode. Wait until OCV is stable (e.g. 5 min).
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speeds catalyst discovery

• Properties: give fundamental understanding of what’s 
driving observed catalytic activity and selectivity
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Existing catalysis databases: Open Catalyst Project

• Team: Facebook, Carnegie Mellon

• Goal/philosophy: use machine learning to replace DFT 
relaxations that find adsorbed states of molecules on 
catalysts to speed up catalyst screening and discovery

• Points of interest

- Big data, but not lowest energy states

- No UI since meant for ML

- No treatment of applied potential/solvent

- Not based on promising catalysts
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Existing catalysis databases: Catalyst Property Database

• Team: ChemCatBio EMN, NREL

• Goal: (1) reduce time searching literature for previously 
computed catalytic pathways by providing data in a 
central, searchable location, (2) enable accelerated 
discovery of catalyst descriptors, property correlations

• Points of interest

- Less data in initial set, but labeled if lowest energy states

- Excellent UI, metadata

- No treatment of applied potential/solvent

- Not based on promising catalysts
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Existing catalysis databases: Catalysis Hub

• Team: SUNCAT, Stanford

• Goal: (1) provide fully self-contained data for predicting 
experimental observations from electronic structure 
calculations (primary), (2) starting point for training and 
developing machine-learning based approaches accelerating 
quantum chemical simulations (secondary)

• Points of interest
- Moderate data

- Good UI

- Good post-processing tools (pourbaix diagrams, volcano plots, etc.)

- No treatment of applied potential/solvent

- Not based on promising catalysts
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Existing catalysis databases: Summary

• Don’t target promising catalysts, but do broader search

• Less complete than materials databases because 
calculations are more expensive, catalysts are more 
diverse than materials

• Fewer properties, e.g. PDOS, bond orders, than 
materials databases

• Simpler or no APIs

- Specifying catalytic reactions harder than specifying materials 
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BEAST DB

• Thrust 1: develop next generation of 

electrochemical solvation models with 

detailed double layer structure

• Thrust 2: beyond-DFT electrochemistry at 

exascale

• Thrust 3: apply techniques to  electrocatalytic 

systems, forming BEAST-DB database for first-

principles electrochemistry
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BEAST DB

• Reaction energetics, and 
electrolyte and electronic 
properties (e.g. PDOS)

• Start with most promising 
facets, electrolytes, 
electrolyte concentrations, 
and potential ranges for 
chosen catalysts

• Use ML to obtain beyond-
DFT accuracy
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BEAST DB “demonstration”

• Search feature similar to Catalyst Property Database, 
Catalysis Hub
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Electrolyte:

BEAST DB “demonstration”

AtomType TotalNetCharge

C 3.676

N -0.970

Fe 2.736

Total energy: -11526.2912 eV

Potential:

X H2SO4

0 V 1 V

HClO4
HCl NaF

• Fe-N-C
Concentration:

10-2 M 10 M

0.5
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• Fe-N-C

Electrolyte:

BEAST DB “demonstration”

AtomType TotalNetCharge

C 4.992

N -0.778

Fe 2.841

Total energy: -11275.8951 eV 

Potential:

X H2SO4

0 V 1 V

HClO4
HCL NaF

Concentration:

10-2 M 10 M

0.5
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BEAST DB

• Team: NREL, CU, RPI, LBNL, U of S. Carolina

• Goal: (1) provide insight into how changes in 
electrochemical conditions lead to observed activity and 
selectivity, (2) give beyond-DFT accuracy for reaction 
energetics and electronic structuring using ML

• Points of interest
- Allow variation of electrolyte, applied potential and easy 

comparison of variations with these knobs

- Variety of electronic descriptors (PDOS, Bader charges, bond 
orders, wavefunction localization), electrolyte descriptors for 
rationalizing changes in behavior with different conditions

- Base catalyst models on which are already promising

- Beyond-DFT accuracy for reaction energetics (planned)

- Smaller range of catalysts (targeted)
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BEAST DB: current status

• BEAST dataset contains 80 unique bulk compositions, 
120 surface facets, over 3000 adsorbate calculations 

• Chemistries: HER, OER, CO2R, NRR, ORR, partial 
methane oxidization reaction (pMOR) to methanol. 

.
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BEAST DB: current status

• BEAST dataset contains 80 unique bulk compositions, 120 
surface facets, over 3000 adsorbate calculations 

• Chemistries: HER, OER, CO2R, NRR, ORR, partial methane 
oxidization reaction (pMOR) to methanol. 

• Materials classes: d-block metals, metal oxides, 2D 
chalcogenides, single-atom alloys (SAAs), 2D metal-
nitrogen-carbon surfaces (MNCs), and multinary Chevrel
phase (CP) chalcogenides. 

• Properties: adsorption energies, converged structure 
geometries, Δ electrons, orbital-projected density of 
states (pDOS), surface-adsorbate pDOS overlap, Bader 
charge distributions.
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BEAST DB: current status

• BEAST DB backend and UI under construction in 
upcoming year 



NREL    |    44

BEAST DB: community involvement



NREL    |    45

BEAST DB: community involvement

• Want contributions from researchers in the 
electrocatalysis community, like YOU



NREL    |    46

BEAST DB: community involvement

• Want contributions from researchers in the 
electrocatalysis community, like YOU

• Planning on having public workshop in the next 1-2 
years to solicit ideas further development of BEAST DB



NREL    |    47

BEAST DB: community involvement

• Want contributions from researchers in the 
electrocatalysis community, like YOU

• Planning on having public workshop in the next 1-2 
years to solicit ideas further development of BEAST DB

• BEAST team has developed uniform set of 
computational parameters for database that will be 
required and checked for community upload
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BEAST DB


